dbMapper User Guide

dbMapper 2.0 User Guide

July 2003

This document is a users’ guide for Version 2.0 of the dbMapper package. The dbMapper
package implements a Data Access Object (DAO) pattern that allows an application
programmer to execute the typical create, retrieve, update, and delete (CRUD)
operations on a relational database without writing SOL code. The package
accomplishes this by using XML configuration files that specify the object-relational
(OR) mapping of Java classes together with the Java reflection API to generate the
necessary SQL statements “on the fly”. This greatly reduces the effort needed to
program the typical CRUD operations used by an application. This package also uses
the JDBC interface so that it is portable across any database that implements JDBC.

This package was developed by the ONSD Software Group of NEC America.

Prepared by:
ONSD Software Group
14040 Park Center Road, Herndon, VA 20171
NEC America

Email: onsd@necam.com
Web: http://www.onsd.nec.com/software

1 of 69

1

2

dbMapper User Guide

Table of Contents

Introduction 4
Using a DBInterface 5
2.1 FUEIA TYPES ...t 5
2.1.1 271 (S 2 <) Lo TSR 5
2.1.2 NESEEA FIELA ...ttt ettt et sttt sb et et e et e sae e e eeeens 5
2.13 (070353101 (55: Q1 23 11 o S RSS 6
2.1.4 Complex Collection FIeld.........c.coiviviiiiieiiiieiieie ettt 7
2.2 Key Fields and Primary KEYScccccuuoiiiiiiiiiiee ettt et 7
2.3 Data-Source, Mappings, Mapping Contexts, and Mappers..............c.ccoceeveeivciioenceencianiaeaeeneen, 8
24 TrAnSACHION MOAEL.................ocoeiiiiiiieieee et 9
2.5 DBINLErfACE MEROGS. ...ttt ettt 9
2.6 Creating @ USEF ODJECL...........c.ccccueiuiriiiiiii ettt sttt 10
2.7 ReMOVING Q USEF OBJECL........c..ccoooeiiiriiiiiiiieeeee ettt 11
2.8 Updating @ USEr OBJECt..............cccccoiiiiiiiiiiiiiit ettt 12
2.9 FiNAING USEF ODJECIS..........oieeieieeee ettt ettt eaeenneens 13
2,10 Finding Primary K@YSccccoiuueiieiiee ettt ettt ettt naeen 14
2.11 User-managed Transaction Methodscccccuiiiiiiiiiiiiiiiie ettt 15
2.12 Other Direct Database Access MEtNOdSccccouuoiiiiiiiiiiiiiiieeeet et 16
Creating a DBInterface 17
3.1 TRIPOAUCTION ...ttt ettt e eneenneens 17
3.2 Overview of Key Classes, Concepts, and DAta..................c.ccoouroeaiereneiiniiiiieeeee e 17
3.2.1 DefaultMapPer CIaSSccviiieiieriieiieieeie ettt ettt sae st re e teesbeessesseesseesseesseessasssensaenseas 18
322 DBMOGUIE Cla8S......c.vteuieuieiiiesieeteeieeitete ettt ettt ettt ettt et e bbbt ebeeste e enneneens 18
323 Mapper Configuration Files..........cceiiiiiiiieiieiiereee ettt 19
324 Data Sources and the Dat aS0our Ce INterfaceccooeverireniiieieeeesee e 19
325 MaPPING SEt FILES ..ottt ettt b et 20
3.2.6 Custom Database Processing: DAOs (Data Access Objects) and the DA nt er f ace...... 20
327 Configuring Mappers Via The Programming APL............ccccooiiiiiiiiiiiiiiieeeee e, 21
3.3 Creating a Mapper Configuration Fileccccoociiiiiiiiiiiiiiiieie ettt 22
3.3.1 [OG0T NQ EIEMENLoviivieiieiieiicieieeie ettt et ebeessessessessenes 23
3.3.2 data_sources anddat a_source Elements............cc.ccoeveeeieereerieecneereeeeeeeenene 23
3.3.3 mappi ng_cont ext s and mappi ng_cont ext Elements..........c..cccoceeveeeeieeeenennne. 27
3.4 Creating a Database Connection File................cccocoouiiiiiiiiiiiiiii ittt 28
34.1 DTD for Database Connection Files...........cccoeuiriiiiiiieiiie e 28
342 Sample Database Connection FIleccciiiiieiiiiiiieiieecieecee et 29
3.5 Creating an Object-relational (OR) Mapping File...............ccccccovoiiiiiniiiiiiiiiieieeieeee e 29
3.5.1 mappi NGS and MAPPI NG EIEMENLS.........ccccveieieieieieeieee ettt 30
3.5.2 Fi @1 0 EICMENL.....cuiiiiieiicieieeeee ettt sttt 31
353 Primary KEY ClassScccueiieiieriieiiiieeeeettesit et eteetesetesteesteesteessessaesseessaesseesseesseessesssensaesens 37
Developing With dbMapper 37

2 of 69

4.1
4.2
4.3

4.4
44.1
442
443
444
445
4.4.6
4.4.7
4438
449

dbMapper User Guide

SYSEEM REGUIFEIMENES ...ttt ettt ettt et e 37
INSEALIATION TASKS ...ttt et 38
Building the dbMapper PACKGZEc.cccooooveiieiiiieiieeeee et 38
ADMAPPET EXAMPLES ..ottt 39
Running the EXamPIEs........cccueiieriieiiiiiieieeieit ettt et essaensaennees 39
Example] — DataSOurces.oouiiierieiieiieieee ettt ettt 40
EXampPle2 — BaSic TYPE ..ccueeieiieitieriiee ettt ettt et s ettt et e nnean 43
Example3 — User Class (User-defined Primary Key Class and Basic Types)ccccceeen.ee. 47
EXampled — TranSaCIONcccuvieiveeeiieeiieeitieestteetteeiteeieeeteeeteeseeeeseesnseeenseessseessseesnseensseesns 51
ExampleS — Nested FIeld......c.ocoviiiiiiiiiieiicieceeeeee ettt 52
Example6 — Person Class (Complex and Complex Collection Fields).........cccccevvvveneennnnen. 55
Example7 - Key Binding Field TYPES ...ccvvecviriiiieiieieeiece ettt 61
EJB EXAMPIEviiiiiiieiecie ettt ettt e be b e ssae st essaessaessaesbaessensaeneas 63

3 of 69

dbMapper User Guide

1 Introduction

The dbMapper package provides powerful functionality to Java applications that interact with a JDBC-
capable relational database. By providing various interfaces and classes that implement a type of Data
Access Object (DAO) pattern, the dbMapper package eliminates the need for an application to write any
SQL statements to perform the typical create, retrieve, update, and delete (CRUD) operations on a
database. The following list outlines some of the main features and benefits associated with the dbMapper
package.

» Eliminates the need to write SQL statements to perform typical CRUD operations on a relational
database.

* Works with any relational database that supports JDBC.
* Gives the user complete control over which attributes of a class are persisted.

* Supports complex attributes (i.e. data members of a class) such as attributes that are themselves
objects, as well as attributes that are arrays or collections.

e Allows the user to work with simple or composite keys.

e Isdesigned to work well with multi-threaded applications.

* Supports transactions.

* Does not require a proliferation of new classes (as some DAO implementations do).

* Allows the user to override the default behavior of any CRUD operation for any persisted class.
* Employs various algorithms to provide high performance.

e Provides useful classes for managing database connections.

The two key components of the dbMapper package are the DBI nt er f ace interface and the

Def aul t Mapper class. DBl nt er f ace is an interface that encapsulates all of the typical CRUD
operations that an application might use, and presents them to the application in the object-oriented view of
the Java language. The Def aul t Mapper class is a concrete implementation of this interface. Internally,
the Def aul t Mapper and its supporting classes manage all of the SQL details needed to store objects in a
relational database via the DBI nt er f ace interface.

The rest of this document provides details and examples for the dbMapper package. The main sections are:

» Section 2, Using a DBInterface. Provides details of the DBI nt er f ace. (After reading this
section, you will have a good idea of what functionality is provided by the dbMapper package.)

* Section 3, Creating a DBInterface. Provides details on the concrete Def aul t Mapper
implementation of DBI nt er f ace that is provided by the dbMapper package, including the
formats of the data source, object-relational (OR) mapping, and mapping context XML files.

* Section 4, Developing with dbMapper. Provides information on installation and configuration,
as well as several detailed examples of dbMapper usage.

If you wish to first see the dbMapper package in action, you can jump directly to the “Developing With
dbMapper” section for instructions on how to get started, including how to run some examples.

4 of 69

dbMapper User Guide

2 Using a DBInterface

The DBI nt er f ace interface provides an object-oriented view of data stored in relational database tables.
It encapsulates database operations such as creating, modifying, querying, and deleting objects in the
relational database. In the “DBInterface Methods” section, the DBl nt er f ace methods are described.
First, however, we discuss some concepts that relate to DBI nt er f ace implementations in general.

2.1 Field Types

The dbMapper package achieves the persistence of Java objects by mapping the fields (i.e. attributes, or
data members) of objects into tables of a relational database. An understanding of the capabilities and
limitations of the dbMapper package is closely related to the types of fields that the package is able to
persist, and how they map to the relational database. This section enumerates and describes the precise set
of field types that the dbMapper package is able to persist.

The first two field types to be discussed are “basic” and “nested” fields. These types are similar in the
sense that they may be stored in a single column of a relational database table. The other two types of fields
used by the dbMapper package are the “complex” and “complex collection” fields. These types are more
complicated in the sense that multipe columns, rows, or tables may be needed to store them. The following
sections provide precise definitions of these types and their relationships to a relational database.

2.1.1 Basic Field

The simplest type of field is referred to as a “basic field”. A basic field is defined to be a field of any of the
following types: int, short, byte, char, long, float, double, String,

I nteger, Short, Byte, Character, Long, Float, Doubl e. In general, storing a basic
field to a database is a relatively simple operation. For example, in the case of a relational database, a basic
field can be stored in a single column of a database table. The Per son class, which is shown below, is an
example of a class whose fields are all basic fields. This class is mapped to a single table in a relational
database, per son_t abl e. Note that the dbMapper package requires all basic fields of any particular
class to map to a single relational database table.

cl ass Person {
String firstNane;
String | ast Nane;
int social SecNum
bool ean i sLi vi ng;

}

create tabl e person_table (
firstnane VARCHAR(64),
| ast nane VARCHAR(64) ,
ssn I NTEGER,
l'iving CHAR(1)

2.1.2 Nested Field

A basic field may be nested within another field of a Java object. In that case, the field is referred to as a
nested field. For example, addr ess. street, address.city, address. state,
address. zi p. zi pCode and addr ess. zi p. zi p4Code are nested fields of the Per son class:

class Zip {
int zi pCode;

5 of 69

dbMapper User Guide

int zip4Code;

cl ass Address {
String street;
String city,
String state;
Zip zip;

}

cl ass Person {
String firstNane;
String | ast Nane;
int social SecNum
bool ean i sLi vi ng;
Addr ess addr ess;

}

In the previous section, it was noted that the dbMapper package requires all basic fields to be mapped to a
single relational database table. We now extend this requirement to include nested fields. In other words,
the dbMapper package requires that all basic and nested fields, for any particular class, map to a single
relational database table. In this example, all of the fields of the Per son class, which are of the basic and
nested types, are mapped to a single table named per son_t abl e:

create table person_table (
firstnane VARCHAR(64),
| ast nane VARCHAR(64) ,

ssn | NTEGER,
living CHAR(1),
street VARCHAR(64) ,
city VARCHAR(64) ,
state CHAR(2),
zip I NTEGER,
zi p4 | NTEGER

)

Note that basic and nested fields are very similar. The main reason for distinguishing them as two different
field types is that they must be handled a bit differently from the programming point of view.

2.1.3 Complex Field

A field is called a complex field if it is not a basic or nested field and there is a one-to-one relation between
this field and the class that contains it (i.e. the field is not a collection or some other class that holds many
objects). A typical example is a field whose type is some user-defined class. In general, database storage
of a complex field is more complicated. In a relational database for example, a complex field and the
object that contains it may be stored in different tables.

In the following example, the f avor i t eMovi e field is a complex field of the Per son class. A database
for this example might be designed so that f avor i t eMovi e field is a reference to an entry in a movi e
table that contains Mbvi e objects.

class Muvie {
String title;
int year;
String producer;
String director;
Person person; // Store reference to the parent person object

cl ass Person {

String firstNanme;
String | ast Nane;

6 of 69

dbMapper User Guide

int social SecNum
bool ean i sLi vi ng;

Movi e favoriteMuvie;

2.1.4 Complex Collection Field

A field is called a complex collection field if there is a one-to-many relation between this field and the class
that contains it. A typical example of a complex collection field is a field that is an array or collection. In
the following example, the f avor i t eMovi es field is a complex collection field. Once again, the storage
of this type is more complicated than the storage of a basic or nested field.

cl ass Person {
String firstNane;
String | ast Nane;
int social SecNum
bool ean i sLi vi ng;

Movi e[] favoriteMvies;

}

Note that the dbmapper package works with complex collection fields that are arrays or collections of
complex fields. Collections and arrays of basic fields are not supported.

Note: While the DBI nt er f ace itself does not distinguish between these different field types, any
concrete implementation of that interface certainly must deal with them. Also, note that basic fields do
play a special role in the definition of the “primary key” concept used by the dbMapper package. This
concept is discussed in the following section.

2.2 Key Fields and Primary Keys

For certain operations, such as locating an object in a database for an update, the concept of a key is
needed. In the case of a relational database, for example, records of a table may be located by the use of a
primary key, which is a set of entries from one or more columns of the database record. The dbMapper
package uses an analogous definition of a primary key. Specifically, a primary key for a Java class is
defined to be a set of fields for that class that uniquely identifies that object. Each field of this primary key
is referred to as a key field. In keeping with the analogy of a relational database key, a key field must be a
basic field, which by definition corresponds to an individual column in a database table.

The definition of a primary key for a class that uses the dbMapper package is optional. However, as
mentioned above, certain operations such as updating objects, deleting or finding objects by key, etc., do
require that a primary key be defined.

Another concept related to primary keys is that of a primary key class. A primary key class is merely a
class that encapsulates all of the key fields of the primary key. Some of the DBI nt er f ace methods, such
asfindByPri maryKey(),orfindAl |l PrimaryKeys(), require that a primary key class be
defined. In the case where a primary key consists of a single key field, there is no need for an application
to define a primary key class. It is already provided by a Java class. For example, if a primary key for a
class consists of a single field of type i nt , the j ava. | ang. | nt eger class serves as the primary key
class. However, for primary keys that consist of multiple key fields, it is up to the application to provide a
primary key class.

7 of 69

dbMapper User Guide

2.3 Data-Source, Mappings, Mapping Contexts, and Mappers

Any implementation of DBI nt er f ace must have some specific information about the objects to be
saved, and the database to which they are saved. The required information is provided by “mapping
contexts”, which consist of “data sources” and “class mappings” (or “mapping sets”). These terms are
defined below:

Data Source
The information that specifies the database and the means by which it is accessed it is called a data source.
For instance, a data source might be a class that provides access to connections on a specified database.

Class Mapping or Mapping

A class mapping, or simply mapping, provides the information that is needed by an implementation of
DBI nt er f ace to store objects of a specific class in a database. For example, a mapping may specify the
relational database table columns that are used to store fields of a class. Note that a single class may have
multiple mappings. An example that motivates the use of multiple mappings is described below under the
“Mapping Context” heading.

Mapping Set
A mapping set is simply a set of mappings (for a set of classes). Since a mapping provides information for

just one specific class, a mapping set is needed when the database is used to store objects of different
classes.

Mapping Context

It is important to note that a single application may want to store different instances of a particular class in
different tables, or even different databases. Furthermore, it may even want to use different mappings for
the same class, depending on the context in which they are being used. The concept of a mapping context
is used to provide this flexibility. By definition, a mapping context is a combination of a data source and a
mapping set. By instantiating DBl nt er f ace objects with different mapping contexts, context sensitive
database storage and retrieval can be achieved. This concept, which is a central concept used by the
dbmapper package, is further illustrated in the following example:

Mapping Context Example

Consider an application that notifies clients of new W dget instances by writing the new instances into the
clients’ respective databases. The wi dget table used by the first client only contains the two columns:
fieldlandfiel d2. The other client uses a new column, named newFi el d, as well asthe fi el d1
and f i el d2 columns. For this example, we assume that the column names in the relational databases
match the field names of the W dget attributes.

cl ass Wdget ({
String fieldi;
String field2;
String newri el d;
}

Now consider that the application is using a concrete implementation of the DBI nt er f ace called

Def aul t Mapper , which takes a mapping context as a constructor argument. In that case, the application
could instantiate two instances of the Def aul t Mapper . One instance would be instantiated with a
mapping context for the first client, and another would be instantiated with a mapping context for the
second client. The first mapping context would contain the information needed by the Def aul t Mapper
to write objects into the two columns, fi el d1 and f i el d2, of the database belonging to the first client.
The second mapping context would contain the information needed by the Def aul t Mapper to write
objects into the three columns, f i el d1 and fi el d2 and newFi el d, of the database belonging to the
second client. The application code would look something like this (note that the classes and method

8 of 69

dbMapper User Guide

signatures used in this example are all fictional; they are only used to demonstrate the concept and utility of
mapping contexts):

/1l use mapping context for clientl
DBl nterface dbi 1l = new Defaul t Mapper (mappi ngCont ext 1) ;
/1l use mapping context for client2
DBl nterface dbi 2 = new Def aul t Mapper (mappi ngCont ext 2) ;

deet wi dget = new Wdget (..);
dbi 1. create(widget); // wite the widget to the first client’s database
dbi 2. create(widget); // wite the widget to the second client’s database

In general, all methods executed by a DBI nt er f ace object are done in the context of a mapping context.
The exact information that must be included in a mapping context is defined by the concrete
implementation of the DBl nt er f ace interface that is used. For example, the mapping context
information that is needed by the Def aul t Mapper class, which is a concrete DBI nt er f ace
implementation provided by the dbMapper package, is described in detail in the Creating a DBInterface
section.

Mapper

The term mapper refers to any object that implements the DBI nt er f ace interface.

2.4 Transaction Model

All DBI nt er f ace operations occur within the context of a transaction. Such transactions are expected to
satisfy the ACID (atomic, consistent, isolated, durable) conditions. While it is up to the concrete
implementations of DBI nt er f ace to implement transactions, the DBI nt er f ace interface does provide
some useful methods for modeling transactions. The following paragraph describes the basic behavior that
DBI nt er f ace implementations are expected to follow with respect to transactions. A more complete
description is provided in the “User Managed Transaction Methods” section.

By default, each single update, create, or delete method called on a DBI nt er f ace object is expected to
occur in the context of a single transaction that is transparent to the user. However, in a situation where a
user wants to execute a set of DBl nt er f ace methods as a single transaction, the DBl nt er f ace
interface provides methods that let an application specify the start and end of a transaction. It is up to the
DBI nt er f ace implementation to ensure the atomicity of the set of operations that are executed between
the start and end of the transaction.

2.5 DBlInterface Methods

All of the methods defined by DBI nt er f ace are provided in the following list. Subsequence sections
provide explanations of the various methods and their usage. In some cases, sample code snippets are used
to illustrate the simplicity of using this interface. For more detailed technical information on the

DBI nt er f ace methods, please refer to the dbMapper javadoc API (in the “doc/javadoc” directory) and
the demo code (in the “examples” directory).

creat e net hods

create() /[l wite an object to the database,
/1 basic and nested attributestt only
createTree() /1 wite an entire object containnent tree to the database

del et e et hods

9 of 69

dbMapper User Guide

del et e() /1 delete an object fromthe database
del eteByAttributes() // delete objects with certain attribute val ues
del et eByPri maryKey() // delete objects with certain key val ues

updat e net hods

update () /1 update an object in the database,
/1 basic and nested fieldslt only
updat eTree () /'l update an entire object containnent tree in the database

finder methods

findA'l () /1 get all objects of a specific class fromthe database
findAll PrimaryKeys () // get all primary keys for a specific class
findByAttributes () /1 get all objects that match certain attribute val ues
findByPri maryKey () /] get the object for the specified key

findByQuery () /1 get a set of objects using a user-defined SQL query

f

ndPri maryKeysByAttributes () // get a set of keys for objects that match
/1 specified attribute val ues
findPrimaryKeysByQuery () // get a set of keys using a user-defined SQ query

ot her (custom SQL) nethods
execut eQuery() /1 execute an SQ query, and return the result set
execut eUpdat e() /'l execute an SQ. | NSERT, UPDATE, or DELETE st at enent

transactional net hods

begi nTransacti on() /1 begin a transaction

commi t Tr ansacti on() /1l commit a transaction

rol | backTransaction() // rollback (cancel) a transaction

i sActiveTransaction() // determine if the current thread is executing a transaction

Note 1 The concept of basic and nested fields is described fully in the “Field Types” section.
2.6 Creating a User Object

The create(Object) method

This method creates a new entry in the database for the specified object. Note that this method saves only
basic and nested attributes. (To include complex and complex collection fields, use the cr eat eTr ee
method.) This method throws an exception if an error occurs, e.g. a primary key violation, mapping not
found, etc.

The following code snippet creates a new Poi nt object and persists its basic and nested fields to the
database:

Point p = new Point (33.4, -87.9);
dblf.create (p);

The createTree (Object) method

This method creates a new entry in the database for the specified object. In contrast to the cr eat e
method, this method saves all field types, including the complex and complex collection types. As a result,
a call to this method, which employs a recursive algorithm, saves the entire containment tree represented by
the Object to the database. For example, a complex field of a saved object might contain another complex
field, and that field itself might contain another complex field, etc.

The following example demonstrates the cr eat e Tr ee method usage for a Pat h object composed of
basic, complex, and complex collection fields. In this example, a pat h is made of Pat hEl emrent objects,
which are in turn made of Poi nt objects. Thus, creation of a pat h object results in persistence of the
entire containment tree, including all intermediate Pat hEl enent objects, as well as the leaf node Poi nt
objects.

10 of 69

dbMapper User Guide

Path path = new Path (pathld);

pat h. set Cyclic(isCyclic);

Pat hEl enent el eml = new Pat hEl enent (new Poi nt (1, 10), curvaturel);
el eml. set Wdt h(w dt hl);

pat h. addEl em (el eml) ;

/Il Create and custoni ze Pat hEl enent el enR

pat h. addEl em (el en®);

/1 Persist entire Path object contai nment tree to database.
dbl f.createTree (path);

The createTree (Object.int) method

The second form of cr eat eTr ee limits the recursion depth to the value specified by the i nt parameter.
For example, if the recursion depth is set to a value of zero, only the basic and nested fields of Object are
persisted. Thus the following two calls are equivalent: cr eat eTr ee(user Qbj , 0) and

creat e(user Obj) . If the recusion depth is set to a value of one, the basic and nested fields one level
lower (i.e. the basic and nested fields of any complex or complex collection fields of Object) are saved. As
a result, if the recursion depth is sufficiently large, the entire containment tree is saved. Thus calls to
createTree(user Qbj, alLargeNunber) andcreateTree(user Qbj) are equivalent.

If the example used in the cr eat eTr ee(Cbj ect) section were modified so that were not necessary to
save the Poi nt objects to the database, then the following line of code could be used.

dbl f.createTree(path,1);

In this case, the Poi nt objects (i.e. the fields of the Poi nt objects) are not stored, since they occur at a
recursion depth of two. All basic and nested fields of the pat h object, which corresponds to a depth of
zero, and the Pat hEl errent objects, which correspond to a depth of one, are saved to the database.

2.7 Removing a User Object

This section discusses various methods that may be used to remove objects from the database. Note that
removal of an object from a database includes removal of the entire containment tree represented by that
object.

The delete(Object userObject) method
This method removes a specified user object from a database (if it can be found). An exception is thrown if
a database error occurs. The following code snippet removes a Per son object from a database:

dbl f. del ete (person);

The deleteByPrimaryKey(Object primaryKey, Class userObjectClass) method
This method removes the user object specified by a primary key. The following example removes a
Per son object:

PersonKey pk = new PersonKey (firstNanme, m ddl eNane, |astNane,
hormePhoneNunber) ;
dbl f. del et eByPri maryKey (pk, Person.class);

The deleteByAttributes(AttrValMap attributes, Class userObjectClass) method

This method removes all objects of the specified class whose field values match those specified in the
attribute value map. Attributes specified in the attribute value map need not be key fields. The following
code snippet removes all Per son objects with last name “ Smi t h” from the database:

11 of 69

dbMapper User Guide

AttrVal Map attrVal Map = new AttrVal Map();
attrVval Map. put (“lastNane”, “Smith");
dbl f. del eteByAttri butes (attrVal Map, Person. cl ass);

2.8 Updating a User Object

The update(Object userObject) method

This method updates an existing database entry with the contents of user Qbj ect . The database entry is
located using the primary key information stored in user Obj ect . Note that this method only updates
non-key basic and nested fields. To include complex and complex collection fields as well, the

updat eTr ee method, which is described below, must be used. An exception is thrown if an error occurs,
e.g. database constraint violation, mapping not found, etc. .

The following code snippet creates a new persistent Per son object, updates some fields (e- mai | ,
addr ess and f ax number) of the object, then applies these changes to the database:

Person p = new Person (fistName, m ddl eNane, |astName, honePhoneNunber);
p. set Enai | (“sonmeone@onmewher e. cont) ;

p. set Fax(" (111) 222- 3456”) ;

dbl f.create(p);

p. set Emai | (“someone@onmewher e_el se. coni) ;

p. set Fax(nul |');

dbl f.update (p);

The updateTree(Object userObject) method

Similar to the the cr eat eTr ee(Obj ect) method, this method employs a recursive algorithm to update
to the entire containment tree in the database for the specified user Qbj ect . As in the case of the

cr eat e method, updates will be applied recursively starting from the specified object, user Cbj ect
down to all leaf nodes of the object containment tree. This method saves all field types (i.e. basic, nested,
complex, and complex collection fields).

The following example demonstrates use of the updat eTr ee method for a Pat h object composed of
basic, complex and complex collection fields:

Path path = // Create and fill Path object containment tree

dbl f.createTree (path); // Persist entire Path object containment tree
/'l to database.

pat h. set Cyclic(fal se);

/1 Delete first PathEl ement fromthe path

pat h. renoveEl en(pat h. get El en{0)) ;

/1 Modify an existing PathEl enent

Pat hEl enent el en? = path. getEl en(1);

el en2. set W dt h(anot her W dt h) ;

Point p = el enR. getPosition();

p.setY(-7);

/1 Add a new Pat hEl ement

Pat hEl enent el en8 = new Pat hEl enent (new Poi nt (4, 14), curvature3);

pat h. addEl em (el enB) ;

dbl f. updateTree (path); // Apply all the changes in Path object
/1 containment tree to database.

The updateTree(Object userObject, int) method

This method recursively updates all of the fields of the specified user Obj ect within a given recursion
depth, as specified by the i nt parameter. As in the case of the cr eat e method, the value of i nt specifies
the number of levels for which the update is called. For example, a value of one will update the parent

12 of 69

dbMapper User Guide

object and all objects just below the parent object. To restrict updates to a depth of one in the above code,
the following code snippet can be used:

dbl f. updateTree (path,1); // update Path and PathEl enents, but not Points

The update(Object userObject, AttrValMap attrValMap, boolean bUpdateUserObject) method

This method saves specified fields of a user object to the database. The key fields of user Cbj ect should
not be modified so that the corresponding database record can be located. The at t r Val Map contains a
set of attribute/value pairs that specify the field values to be updated. The bUpdat eUser Obj ect flag
indicates whether the changes are to be applied to the user object after a successful database update. This
flag can be useful in the context of a transaction, where the user may not want the values of the original
object to be changed until the transaction is committed. The following example updates selected fields to
the database:

Person p = // Create and fill person object containnent tree
dblf.createTree (p); // Persist person object containnent tree

/1 to database.
AttrVal Map attrVal Map = new AttrVal Map();

attrVval Map. put (“email”, “abc@yz.coni);
attrVal Map. put (“address”, new Address (“Street, #Apt”, “city”, “state”,
zi pCode)) ;

dbl f.update (p, attrVal Map, true);
String enail AfterUpdate = p.getEmil ();
/1 email AfterUpdate should be set to “abc@yz.cont

The update(Object userObject, HashMap attrValMap, boolean bUpdateUserObject) method
This method is identical to the previous updat e method, except that the set of attribute/value pairs is
specified by a HashMap instead of an At t r Val Map data structure.

HashMap hVal Map = nul | ;
Person p = // Create and fill person object containnent tree
dblf.createTree (p); // Persist person object containnent tree
/1 to database.
hVal Map = new HashMap(2);
hval Map. put (“email”, “abc@yz.coni);
hVal Map. put (“address”, new Address(“Street, #Apt”, “city”, “state”,
zi pCode)) ;
dbl f. updat e(p, hVval Map, true);
String email AfterUpdate = p.getEmil ();
/1 email AfterUpdate should be set to “abc@yz. conf

2.9 Finding User Objects

The findByPrimaryKey(Object primaryKey, Class userObjectClass) method

This method returns an object, populated with basic and nested fields only, corresponding to the database
entry that matches the specified key and class. (To get an object with all fields populated, use the version
of this method below.) An exception is thrown if an error occurs, e.g. invalid primary key, mapping not
found, etc. The following code snippet locates the Per son object specified by the primary key class:

Per sonKey pk = new PersonKey (fistNane, m ddl eNane, |astNane,
homePhoneNunber) ;
Person p = dblf.findByPrinaryKey (pk, Person.class);

The following code loads a Pat h object from the database by specifying a single primary key:

Path path = dblf.findByPrimaryKey (new Integer(pathld), Path.class);

13 of 69

dbMapper User Guide

The findByPrimaryKey(Object primaryKey, Class userObjectClass.int depth) method

This method returns an object, populated up to the specified recursion depth, corresponding to the database
entry that matches the specified key and class. This method can be used to load part or all of a user object
containment trees. This method tries to recursively load all objects, starting from the object identified by
the pri mar yKey, and terminating at the specified recursion dept h. The following code snippet loads
the entire object containment tree from database for a pat h object specified by a primary key:

Path path = dblf.findByPrimaryKey (new Integer(pathld), Path.class,
9999) ;

int w= path.getEl en(0).getWdth(); // Access an object in the
/1 contai nment tree

The findByAttributes(AttrValMap attributes, Class userObjectClass) method

This finder method returns a collection of user objects whose field values match those specified in the
specified attribute value map. The attribute value map is expected to contain at least one attribute. Also all
the attributes should be limited to basic fields. The f i ndByAt t ri but es method can be used in place of
the f i ndByPr i mar yKey method by storing all of the key field values in the attribute value map. This
technique is most useful for cases where a primary key class is not defined. The following example returns
all of the Per son objects with last name “ Smi t h” from the database:

AttrVal Map attrVal Map = new AttrVal Map();
attrVal Map. put (“lastNane”, “Smith");
Collection smths = dblf.findByAttributes (attrVal Map, Person. cl ass);

The findAll(Class userObjectClass) method
This method retrieves all user objects that belong to the specified class. Only basic and nested fields of the
objects will be retrieved when this method is used. The following piece of code loads all Per son objects:

Col I ection people = dblf.findAl I (attrVal Map, Person.cl ass);

The findByQuery(String query, Class userObjectClass) method

Although the finder methods described above should fulfill the needs of most applications with regard to
loading user objects from a database to memory, there may still be a need to allow the user to use custom
SQL queries to retrieve a set of user objects from the database. Examples of such cases are relational table
joins, sub-queries, etc. The f i ndByQuer y method allows execution of such custom SQL queries. The
resulting user objects are returned in a Col | ect i on object. The SQL query is expected to be a valid
JDBC query, which should return database rows that contain all of the fields defined by the mapping for
this object. One should use this method only if none of the other finder methods (f i ndByPr i mar yKey,
findByAttributes,findAll)servesthe purpose. This method is the most flexible of all finder
methods, but requires that SQL details be included in the user code, which is generally not desirable. The
following code snippet demonstrates the usage of the f i ndBy Quer y method:

/1 Find all the points lying within 10-unit radius frompoint (4, 5)

String query = “select x, y from point_table where
(((x-4)*(x-4)+(y-5)*(y-5)) <= 100)"

Col I ection points = dblf.findByQuery(query, Point.class);

ThefindByAttributes,findAl I, andfindByQuery methods only fill the basic fields of the user
object(s).

2.10 Finding Primary Keys

The primary key finder methods have signatures very similar to those described in the “Finding User
Objects” section.

14 of 69

dbMapper User Guide

The findPrimaryKeysByAttributes(AttrValMap attributes, Class userObjectClass) method

This method returns a collection of primary key objects whose field values match those specified in the
attribute value map. The following example returns all of the Per son primary keys for all objects in the
database (in the mapping context of dbl f) whose last name is “ Smi t h” :

AttrVal Map attrVal Map = new AttrVal Map();

attrVal Map. put (“lastNane”, “Smith”);

Col I ection smithKeys = dblf.findPrimaryKeysByAttributes (attrVal Map,
Person.class); // Collection of PersonKey objects

The findAllPrimaryKeys (Class userObjectClass) method
This method retrieves all primary key objects belonging to the specified class.

Col | ection personKeys = dblf.findAllPrimaryKeys (attrVal Map,
Person.class); // Collection of PersonKey objects

The findPrimaryKeysByQuery(String query, Class userObjectClass) method

This method returns a collection of primary key objects based on a specified SQL query. This method
should only be used if none of other primary key finder methods (f i ndPr i mar yKeysByAttri but es,
findAl I Pri mar yKeys) can serve the purpose. The SQL query is expected to return database rows that
contain all of the key attributes defined by the class mapping of the specified user Cbj ect O ass. The
following code finds all the primary key objects associated with people whose phone numbers are listed
with " Veri zon” .

String query = “select p.firstname, p.m ddlenanme, p.|astnanme, p.honmephone
from PERSON p, PHONE_COWPANY c where c.conpany='Verizon’
and c. homephone=c. phonenunber and c.firstname=p.firstnane
and c. m ddl enanme=p. ni ddl enane and c. | ast nane=p. | ast nane”

Col I ection verizonKeys = dblf.findPrimaryKeysByQuery(query,

Person.class); // Collection of PersonKey objects

2.11 User-managed Transaction Methods

The previous section dealt with the various atomic DBI nt er f ace methods, for which transactions are
handled internally within the methods themselves. However, DBI nt er f ace also allows the application
to manage transaction boundaries across a set of DBl nt er f ace method invocations. This allows users to
create their own transactions when multiple updates need to be done as part of an atomic operation. One
simple restriction placed on these transactions is that they are all executed within a single thread. Multiple
threads cannot participate in the same transaction.

The beginTransaction() method

This method creates a new transaction and associates it with the current thread. After successful invocation
of this method, all DBI nt er f ace methods called from the same thread are executed as part of this
transaction. The same database resource (connection) is used for all method invocations belonging to this
transaction, and the results are applied to the database only when the user explicitly terminates the
transaction for the current thread with the commi t Tr ansact i on() method.

The isActiveTransaction() method
This boolean method indicates whether the current thread is actively involved in a transaction. A value of
t r ue is returned if the thread is in an active transaction. Otherwise, f al se is returned.

The commitTransaction() method
This method commits all of the database changes made in the transaction associated with the current thread.
When this method completes, the thread is no longer associated with a transaction. This method ensures

15 of 69

dbMapper User Guide

that all changes are applied to the database in an atomic manner. If any single update within this
transaction fails (database corruption, disk space problem etc) then all the updates will be rolled back.

The rollbackTransaction() method

A call to this method rolls back all the database changes made within the current transaction (i.e. all calls
made in this thread since begi nTr ansact i on() was called). This method can be invoked at any point
of time within a transaction. When the r ol | backTr ansact i on() method completes, the thread is no
longer associated with a transaction.

The following example demonstrates a typical transaction. This example describes the processing that
occurs when a customer books a flight. The database needs to be updated with the payment information,
reservation details and ticket details in a single atomic operation. Otherwise, ifati cket object creation
were to fail after the corresponding paynent object had already been successfully updated, this might
lead to one very irate customer! By using the transaction, this code ensures that all three objects are stored
or none are stored. Thus, the customer will not be charged unless his ticket is created.

dbl f. begi nTransaction();

try {
Reservation reservation = new Reservation (custonerld, price, date);

Paynment paynent = processCreditCardPaynment (customerld, price,
credi t Cardl nfo);

Ti cket ticket = new Ticket (custonerld, date);

dbl f.create (reservation);

dbl f.create (paynent);

dblf.delete (ticket);

dbl f.commit Transaction();

i ssueTi cket ToCust oner (ti cket);

}
catch (Exception ex) ({
ex. printStackTrace();
dbl f.rol | backTransaction();

2.12 Other Direct Database Access Methods

Although the DBI nt er f ace methods handle most typical database operations that an application needs,
there are some complex cases, such as relational table joins, sub-queries, etc., in which an application
programmer may need to execute custom SQL queries. The DBI nt er f ace provides a set of methods that
support such custom database operations.

The getConnection method

This method allows a user to get a direct connection to the database, so that custom queries, updates, or
other custom database operations may be performed. The nature of the connection is determined by the
data source of the mapper (i.e. concrete DBI nt er f ace implementation) that is being used. For example,
a mapper may use a connection pool that is shared among several mappers as its data source. In that case,
the get Connect i on method returns one of the free connections from that pool.

The releaseConnection method

This method is used to release a connection obtained by the get Connect i on method. It should be
called when a connection obtained by get Connect i on is no longer in use. Note that failure to release
connections obtained by the get Connect i on method may exhaust all connections that are available
through get Connect i on.

The executeQuery(java.lang.String query) method

16 of 69

dbMapper User Guide

This method executes an SQL statement that returns a single Resul t Set object and returns the
j ava. sgl . Resul t Set object to the caller. Typically, the query is a static SQL SELECT statement.
The user should close the returned result set before invoking another DBl nt er f ace method.

The executeUpdate(java.lang.String query) method

This method executes an SQL INSERT, UPDATE or DELETE statement, or an SQL statement that returns
nothing. It returns either the row count for the INSERT, UPDATE or DELETE statement, or zero for SQL
statements that return nothing.

The following code snippet gets a database connection, performs some operations on it, and then releases it.

DBConnecti on conn = dblf. get Connection();
java.sql.ResultSet rs = null;
if (null !'= conn) {

try {
java.sql. Statenent stnt = conn. get Connection();
rs = stnt.executeQery (query);
/1 perform sone operations on result set
rs.close();
int rows = stnt.execut eUpdat e(updat eQuery);

}
finally {
if (null I'=rs) {
try { rs.close(); } catch(Exception innerEx) {}
}

/1 No need to close statenent as its lifecycle
/1 is maintained by DBInterface
dbl f.rel easeConnection();

3 Creating a DBInterface

3.1 Introduction

The previous section described the DBl nt er f ace interface in detail, including a discussion of relevant
concepts, as well as a detailed explanation of the methods provided by that interface. This section
discusses the concrete implementation of DBI nt er f ace that is provided by the dbMapper package, as
well as other supporting classes and interfaces. The two key classes of the dbMapper package are the
DBModul e and Def aul t Mapper classes. The Def aul t Mapper is a concrete implementation of the
DBI nt er f ace interface, and the DBModul e class is used to instantiate Def aul t Mapper instances.
Use of these classes eliminates the need for the application programmer to write SQL code to perform
standard database operations related to the persistence of Java objects in relational databases.

Before discussing details of the programming API and configuration files that are needed to use the
dbMapper package, an overview of the key concepts and terms is provided in the following section. It may
also be useful to review the “Using a DBInterface” section before reading this section.

3.2 Overview of Key Classes, Concepts, and Data

This section discusses the two key classes of the dbMapper package, DBMbdul e and Def aul t Mapper,
and the concepts, terminology, and data files associated with them. This section assumes that the reader is

17 of 69

dbMapper User Guide

already familiar with the concepts presented in the “Data-Source, Mappings, Mapping Contexts, and
Mappers” section, such as mappings, mapping sets, mapping contexts, and mappers.

3.2.1 DefaultMapper Class

The Def aul t Mapper class is a concrete implementation of the DBI nt er f ace interface. It is the
workhorse of the dbMapper package. Each instance of the Def aul t Mapper class, which we refer to as a
“mapper”, is associated with a single mapping context. Recall that a mapping context, which consists of a
data source and a mapping set, specifies information that allows a DBI nt er f ace instance to save
instances of specified Java classes to a specified relational database. The relational database and the means
to access it are encapsulated in the data source. The Java classes that may be persisted, and the mapping
details needed to accomplish persistence in a relational database, are encapsulated in the mapping set.

Note that two features of the DefaultMapper class are (1) the ability to manage transactions, and (2) a
flexible mechanism for overriding the default behavior of any subset of DBInterface methods for any
mapped class. The implementation of transactions is discussed in the “Transaction Model” and “User-
managed Transaction Methods” sections, and the mechanism for overriding default behavior is discussed in
the “Custom Database Processing: DAOs (Data Access Objects) and the DAOInterface” section.

3.2.2 DBModule Class

The dbMapper package provides a singleton class, DBModul e, which initializes the dbMapper package
and manages the creation of all mappers required by an application. In the following example, the
dbMapper package is initialized, and two mappers are created.

/1 Initialize the dbMapper library

DBMbdul e dbm = DBMbdul e. i nit (“dbmapper. xm ”);

/1 Get a Defaul t Mapper (database interface) for the specified mapping
cont ext

DBl nterface dblfl
DBI nterface dblf2

dbm cr eat eDef aul t Mapper (“my_context1”);
dbm cr eat eDef aul t Mapper (“my_cont ext2");

The “dbmapper. xm ” argument to the i ni t method specifies the name of the mapper configuration file
to be used by the application. A “mapper configuration file”, which is created by the application
programmer, includes all of the information needed to instantiate mappers, including the specification of
one or more mapping contexts. These mapping contexts, which are identified by name, are passed as
arguments to the cr eat eDef aul t Mapper method to create specific mappers. (Refer to the “Mapper
Configuration Files” and “Creating a Mapper Configuration File” sections for a detailed description of the
content and format of these files.)

As discussed above, the i ni t method of the DBMbdul e class takes a mapper configuration file as an
argument. However, the mapper configuration file itself may refer to other supporting files: namely class
mapping files and database connection files. The appropriate i ni t method to be used depends on how the
mapper configuration file and the supporting files are organized. The following list describes the available
options.

* init (String startingDir, String configXMLFile). This method initializes DBMbdul e with data
from the mapper configuration file specified by conf i gXMLFi | e, that is located in the “start
directory” specified by st arti ngDi r. Any supporting files referenced by the mapper
configuration file are loaded relative to the start directory. The start directory can be an absolute
path to a directory or a path relative to the application run directory. If the files are to be loaded
from a jar file, the start directory must refer to an absolute path (i.e. start with /”).

18 of 69

dbMapper User Guide

* init (String configXMLFile). This method initializes DBMbdul e with data from the mapper
configuration file specified by conf i gXM_Fi | e. All of the files (including the mapper
configuration file) will be loaded relative to the application run directory. This method is
equivalenttoinit(".", confi gXM.Fil e).

* init(). This method initializes DBModul e without specifying any mapper configuration file. In
this case, the dbMapper package is initialized without any mapping context or data sources.
(When this method is used, the application programmer must supply configuration data to
DBModul e via the programming API. Refer to the Javadoc documentation for details. The
programming API is currently not covered by this users guide.)

3.2.3 Mapper Configuration Files

The mapping contexts that are used by mappers, and the supporting data such as data sources and mapping
sets are represented in an XML file referred to as a mapper configuration file. This configuration file is
used by the DBModul e class to instantiate mappers that use specified mapping contexts. A mapper
configuration file also contains other settings, such as logging settings to be used by mappers. In this
section, we give an overview of the mapper configuration file contents and format. For a complete
specification of the file format, see the “Creating a Mapper Configuration File” section.

The main section of the mapper configuration file is delimited by the <mappi ng_cont ext s> tag. This
section specifies one or more mapping contexts. Each mapping context, which is delimited by the
<mappi hg_cont ext > tag, contains the following information:

* Mapping context name. The i d attribute specifies the mapping context name. This name is
passed as an argument to the cr eat eDef aul t Mapper method of the DBMbdul e class to
instantiate a mapper.

* Data source ID. A data source ID, which is specified by the dat a_sour ce_i d attribute,
specifies the data source for the mapping context. The data source itself is defined in another
section of the mapper configuration file delimited by the <dat a_sour ces> tag.

* Mapping set files. Anor_nappi ng_fi | es element specifies a set of one or more files
referred to as “mapping files”. Each mapping file contains mappings for one or more Java classes.
By default, all of the mappings of all specified mapping set files are included in the mapping
context. However, specific mappings within each file may be included or excluded using include
and exclude tags.

Note that the mapper configuration file format is designed so that any mapping context in the file may use
any of the data sources or mapping sets defined in the file. This provides a great deal of flexibility in
defining mapping contexts. More information on the data sources and mapping set files used by the
dbMapper package are provided in the next two sections.

3.2.4 Data Sources and the Dat aSour ce Interface

One main component of a mapping context is the data source. The data source is used by a mapper to
establish and manage connections (one or more) to a database.

All data sources used by the dbMapper package must implement the Dat aSour ce interface.
Implementations of this interface are essentially database connection managers. Internally, the dbMapper
package uses the get Connect i on and r el easeConnect i on methods as needed to support the other
DBI nt er f ace methods. (Note that unless the application programmer needs to execute some custom

19 of 69

dbMapper User Guide

database operations, these methods need not be called by the application code. The get Connecti on
method is used to get a database connection object from the Dat aSour ce object. Once the connection is
no longer needed, e.g. some set of database operations have been completed, the connection should be
returned to the data source by invoking the r el easeConnect i on method.) The dbMapper package
uses a DBConnect i on class to model all database connections.

Three concrete implementations of the Dat aSour ce interface are provided by the dbMapper package:

« Basi cDat aSource
¢ Connecti onPool Dat aSour ce
« JNDI Dat aSour ce

Basi cDat aSour ce provides a single connection, while Connect i onPool Dat aSour ce provides a
pool of connections (which is useful for multi-threaded applications). JNDI Dat aSour ce is a mere
wrapper around an installed] avax. sql . Dat aSour ce that is bound to a JNDI path. These three

Dat aSour ce implementations should satisfy the requirement of most database applications in acquiring
and releasing database connections, although in some cases it may be desirable to create a custom data
source.

Note that the flexibility of data sources allows an application to fine tune how the database resources (i.e.
connections) are used. For example, in an area of the code where high performance is critical, an
application might use a mapper whose context uses a dedicated Connect i onPool Dat aSour ce
instance, while all other areas of the code use mappers that share some other common data source.
Alternatively, if there are other special processing needs regarding the management of database
connections, a custom class that implements the Dat aSour ce interface could be implemented and used
with the dbMapper package.

3.2.5 Mapping Set Files

A second main component of a mapping context is the mapping set. The mapping set, which consists of a
set of mappings, provides all of the information needed by a mapper to persist objects for a specific set of
Java classes. Each mapping defines the information needed to persist instances of a particular class. A
mapping includes information such as which tables and columns of the database are to be used to store the
various fields of the class.

The mapping set is specified in the mapper configuration file as a set of mapping set files. A mapping set
file is an XML file that defines mappings for one or more classes. Note that although a complete mapping
set may be specified in a single file, the dbMapper package allows a set of mapping set files to be used.
Furthermore, within any mapping set file, any subset of mappings may be included or excluded from the set
using include and exclude tags. Together, these options provide flexibility that lets the application
programmer organize mappings in a way that best suits the application. For example, this makes it possible
for two different mapping contexts to contain a common subset of mappings (i.e. two mapping sets could
include the same mapping set file, so that both mapping sets contained that common subset of mappings).

3.2.6 Custom Database Processing: DAOs (Data Access Objects) and the
DAO nterface

Although the Def aul t Mapper class provides a default implementation for all of the database operations
defined by the DBInterface, there may be cases where an application programmer needs to provide his own
implementation. For example, he may want to implement his own algorithm for persisting instances of
some class that is too complex for the dbMapper object-relational mapping model. Or, for example,
because of some other application-specific requirement, he may want to override the default processing

20 of 69

dbMapper User Guide

provided for a specific method of some specific class. The use of an interface named DAQ nt er f ace
gives the programmer the capability to provide these custom implementations within the framework of the
dbMapper package.

The DAQ nt er f ace interface is essentially identical to the DBI nt er f ace interface. (Refer to the
javadoc API in the “doc/javadoc” directory for the specific definition of this interface.) An implementation
of this interface is referred to as a DAO. The dbMapper package provides a single DAO, which is named
Def aul t DAQ npl . By default, each database operation that is invoked on a mapper uses a

Def aul t DAO npl object to perform that operation. (It is the Def aul t DAO npl class that
encapsulates all of the object-relational mapping processing that is done by the dbMapper package. While
the transaction and data-source logic is still handled by the Def aul t Mapper class, the DAQ nt er f ace
interface defines all of the methods needed to create, delete, update and query object instances of a given
class.)

To override the default database operations provided by the dbMapper package, an application programmer
must provide a custom DAO (i.e. a custom implementation of the DAQ nt er f ace) . To illustrate the
point, we will use an example where an application programmer wants to override the cr eat e() method
processing for a class named MyCl ass. As a first step, the application programmer must derive a new
class from Def aul t DAQ npl ; we will call it MyDAQO. Then he must override the cr eat e() method to
implement his custom processing. (Of course, if a programmer would like to provide custom
implementations for all of the methods, then he might prefer to directly provide an implementation of
DAJ nt er f ace, rather than deriving a class from Def aul t DAO npl .) Finally, the programmer must
modify the mapping for Myd ass so that it uses My DAOas its DAO (instead of the default DAO,

Def aul t DAO npl). Refer to the “mappings and mapping Elements” section for details on how to
specify a DAO for a class mapping.

As mentioned above, the DAO nt er f ace method signatures are nearly identical to the DBI nt er f ace
method. The only difference between the DAQ nt er f ace and DBInterface methods is that the

DAQ nt er f ace methods have an extra argument of type DBConnect i on. To understand why, recall
that all Def aul t Mapper operations occur within the context of a transaction. These transactions may be
initiated by application code or by the Def aul t Mapper class itself to ensure the atomicity of

DBI nt er f ace operations. The connection argument provides the application programmer of a DAO
with the DBConnect i on object that is associated with the current database transaction (i.e. the one
associated with the current thread of execution). The application programmer is expected to use this
database connection so that the integrity of the transaction is maintained. (The programmer may create and
use his own connection, but must realize that any operations done on that connection will not be part of the
transaction being managed by the mapper that is calling the current DAO operation).

Also, an application programmer who implements a DAO is expected to throw exceptions in the DAO code
to the calling Def aul t Mapper class. Otherwise, the integrity of the transaction maintained by the
DefaultMapper class is not guaranteed (i.e. the commit or rollback might not give the desired result).

3.2.7 Configuring Mappers Via The Programming API

The previous sections introduced the mapper configuration file as a means to define mapping contexts.
These contexts can then be used to instantiate individual mappers using the cr eat eDef aul t Mapper
method of the DBMbdul e class. Note, however, that the dbMapper package does provide a set of classes
that let the application programmer specify mapping contexts and all associated data programmatically,
instead of through configuration files. A key class for this type of development is the ORMappi ngl nf o
class. For more information regarding this class and related classes, refer to the Javadoc API
documentation of the dbMapper package.

21 of 69

dbMapper User Guide

3.3 Creating a Mapper Configuration File

This section describes the content and format of mapper configuration files. For an overview of these files
and how they are used, refer to the “Mapper Configuration Files” section. The DTD file for mapper
configuration files is named “dbmapper.dtd”, and is included in the “lib/dbmapper.jar” file of the dbMapper
distribution.

A mapper configuration file is written in XML and composed of the following three elements:

* | oggi ng (optional)
 data sources
e nmappi ng_contexts

The | oggi ng element holds the | 0g4j category name that dbMapper classes use to insert log and trace
output into log files.

<! ELEMENT root (| ogging?, data_sources, nappi ng_cont exts) >

The dat a_sour ces element consists of a set of dat a_sour ce elements. Each dat a_sour ce
element contains an i d attribute that uniquely identifies the dat a_sour ce. Each dat a_source
element defines a data source and can be any of the following types: basi c_dat a_sour ce,
connection_pool, jndi_data_source, orcustom data_source.

The basi ¢c_dat a_sour ce element represents a Basi cDat aSour ce object. The

basi c_dat a_sour ce element is composed of aconnection_info_file anda
max_connect i ons attributes. The connecti on_i nfo_fil e attribute refers to a “database
connection file”(refer to the “Creating a Database Connection File” section). The nmax_connect i ons

attribute specifies the maximum number of database connections that can be opened by the
Basi cDat aSour ce.

The connect i on_pool element represents a Connect i onPool Dat aSour ce object that manages a
pool of database connections. The connecti on_pool element is composed of a

connection_i nfo_fil e and several pool capacity related attributes, namely i niti al _capacity,
capacity_increnment and nax_capacity.

The j ndi _dat a_sour ce element describes a JNDI Dat aSour ce object. Each
j ndi _dat a_sour ce element contains a single j ndi _| ocat i on attribute that is set to the INDI-path
of the installed j avax. sql . Dat aSour ce object to which the JNDI Dat aSour ce is bound.

The cust om dat a_sour ce element is used to define a custom or third-party Dat aSour ce
implementation. The custom_dat a_sour ce element is composed of a ¢l ass attribute and pr operty
elements. The cl ass attribute specifies the fully qualified class name of the Dat aSour ce interface
implementation. Each pr oper ty element represents a name/value pair setting that is used to customize
the Dat aSour ce implementation. (Refer to the “custom_data_source Element” section for details.)

The mappi ng_cont ext s element consists of a set of Mappi Ng_cont ext elements. Each

mappi ng_cont ext element defines a mapping context that may be used by the application to instantiate
a mapper. Each mappi ng_cont ext element is composed of an i d attribute, a dat a_source_i d
attribute, and one or _nmappi ng_fi | es element. Thei d attribute uniquely identifies the mapping
context among others. The dat a_sour ce_i d attribute contains a reference to a dat a_sour ce
element by specifying a data source i d that is defined within the mapper configuration file. The

or _mappi ng_fi | es element represents the mapping set that is used by the mapping context. The

or _mappi ng_fil es element is composed of or _mappi ng_fi | e elements. Each

22 of 69

dbMapper User Guide

or _mappi ng_fi | e element contains a reference to an OR mapping file (refer to the “Creating an
Object-relational (OR) Mapping File” section for details). The or _rmappi ng_fi | e element may
optionally contain an i ncl udes_nappi ng_set or excl udes_mappi ng_set tag. These tags are used
to select a specific subset of mappings from the file.

3.3.1 | o0ggi ng Element

Logging and tracing at run time are achieved by using the | 0g4j package, which is a popular and widely
used logging package for Java. (Please refer to | 0g4j documentation at http://jakarta.apache.org/log4j/
for details on log category and other logging concepts. Some of the explanation below assumes familiarity
with the | 0g4j concepts). By default, all the dbMapper classes use the “dbMapper ” category name for
logging. This is done to provide control over the trace messages generated by the dbMapper classes at run
time.

<! ELEMENT | oggi ng EMPTY>
<! ATTLI ST | oggi ng category CDATA ' dbMapper' >

The | oggi ng element has a single attribute namely cat egory.

Attribute |Description Required

cat egory |The |l og4j category name used by dbMapper classes to insert logging code. [No

3.3.2 data_sources and dat a_sour ce Elements

The dat a_sour ces element contains all of the data sources defined for an application. It can contain
any number of dat a_sour ce elements. Each dat a_sour ce element has a unique i d attribute that can
be used to reference it.

<! ELEMENT dat a_sour ces (data_source)+>

A dat a_sour ce element encompasses all the necessary information needed to create an instance of the
Dat aSour ce interface.

<! ELEMENT dat a_source
(basi c_dat a_sour ce| connecti on_pool | j ndi _dat a_source| cust om dat a_sour ce) >
<I ATTLI ST data_source id CDATA #REQUI RED>

A dat a_sour ce element has a single mandatory i d attribute. The i d attribute must contain a value that
is unique among all data sources defined within the mapper configuration file.

Attribute | Description Required

id The dat a_sour ce (unique) identifier. | Yes

A dat a_sour ce element contains any of the following elements depending upon the data source type:
e basic_data_source
e connection_pool
e jndi _data_source
» custom data_source.

The first three types correspond to the three concrete implementations of the Dat aSour ce interface
provided by the dbMapper package. These three Dat aSour ce implementations should meet the

23 of 69

dbMapper User Guide

connection management requirements of most typical database applications. However, in some cases it
may be desirable to create a custom class that implements the Dat aSour ce interface and associate it with
the desired mapping contexts. The cust om dat a_sour ce type encapsulates all the necessary
information to create a custom Dat aSour ce implementation.

3.3.2.1 basi c_dat a_sour ce Element and Basi cDat aSour ce

The Basi cDat aSour ce, as indicated by its name, is a very basic implementation of the Dat aSour ce
interface. The Basi cDat aSour ce simply establishes a new JDBC connection each time the

get Connect i on method is invoked. The r el easeConnect i on method simply frees all the resources
acquired by the JDBC connection.

As opening a new JDBC connection is a costly operation, this data source is only suitable for those
mappers (i.e. Def aul t Mapper objects) where database operations are infrequent or for one-time use
only.

The Basi cDat aSour ce object requires that a database connection file be specified. That file supplies
information that is used to locate and connect to a database, such as a JDBC driver name, URL, a user
name and password, etc. See the “Creating a Database Connection File” section for details on the file
format, parameters, and validation rules.

The basi ¢c_dat a_sour ce element contains all of the information that is needed to create a
Basi cDat aSour ce object. The following DTD snippet shows the attributes for this type of data source.

<! ELEMENT basi c_data_source EMPTY>
<! ATTLI ST basi c_data_source connection_info_file CDATA #REQU RED>
<! ATTLI ST basi c_dat a_source nmax_connecti ons CDATA '0'> <!-- unlinmted -->

The basi ¢c_dat a_sour ce element has two attributes:

Attribute Description Required | Default
connect i on_i nfo_fil e|The name of a database connection file. Yes N/A
nmax_connecti ons Maximum number of database connections that can |No Unlimited

be opened by this data source at any given time. A
value less or equal to zero specifies unlimited
connections.

3.3.2.2 connecti on_pool Element and Connecti onPool Dat aSour ce

The Connect i onPool Dat aSour ce class manages a pool of database connections so that database
resources are efficiently managed. Pooling also allows concurrent database operations in multi-threaded
applications.

A Connect i onPool Dat aSour ce object creates a number of connections at startup (as specified by the
i ni tial Capacity parameter) and places them in a pool. When a user requests a connection, a free
connection from the pool is returned to the user. When the user is done with a connection, he returns it
back to the pool. This data source never closes connections, but does allocate and open new connections as
required. This eliminates the overhead of closing and re-creating new connections for each request.

The maxCapaci t y parameter defines an upper bound on number of connections that may be created by
this data source. A value less than or equal to zero is used to specify unlimited connections.

24 of 69

dbMapper User Guide

If all the pooled connections for a data source are in use at the time that another connection is requested, a
Connect i onPool Dat aSour ce object attempts to establish more database connections based on the
value of the capaci t yl ncr ement property. However, the total number of connections can never
exceed the maxCapaci t y value.

Here are some useful Connect i onPool Dat aSour ce settings:

1. For a fixed size pool of n connections (all connections created at initialization time):
Initial Capacity = n; capacitylncrement = 0; maxCapacity >= n,

2. For a growing pool with upper bound, n:
Initial Capacity = c; capacitylncrement >= 1; maxCapacity = n
where 0 <= c <= n

3. For an infinitely growing pool:
Initial Capacity >= 0; capacitylncrenent >= 1; naxCapacity = 0

Similar to the Basi cDat aSour ce data source, the Connect i onPool Dat aSour ce also requires
that a database connection file be specified. That file supplies information that is necessary to locate and
connect to a database, such as its JDBC driver name, URL, a user name and password, etc. See the
“Creating a Database Connection File” section for details on the file format, parameters, and validation
rules.

The connect i on_pool element contains all the information needed to instantiate and configure a
Connect i onPool Dat aSour ce object.

<! ELEMENT connecti on_pool EMPTY>

<! ATTLI ST connection_pool connection_info_file CDATA #REQUI RED>

<! ATTLI ST connection_pool initial_capacity CDATA '1'>

<! ATTLI ST connection_pool capacity_increment CDATA '1'>

<! ATTLI ST connection_pool max_capacity CDATA '0'> <!-- unlinmited -->

The connecti on_pool element has four attributes:

Attribute Description Required |Default
connection_info_fil e|The name of a database connection file. Yes N/A
initial _capacity The initial capacity of the pool. No 1
capaci ty_i ncrenent The amount by which the capacity is increased when |No 1

the more connections are needed.

max_capacity The maximum number of database connections that |No Unlimited
can be opened by this data source at any given time.
A value less than or equal to zero specifies unlimited
connections.

3.3.2.3 jndi _dat a_source Element and JNDI Dat aSour ce

The JNDI Dat aSour ce data source adapts the j avax. sql . Dat aSour ce interface to the dbMapper
Dat aSour ce interface. The JNDI Dat aSour ce class constructor takes the JNDI path (i.e. location) of
an installed] avax. sql . Dat aSour ce as input. First, the constructor creates the initial naming context
(j avax. nanmi ng. I ni tial Cont ext) fromthe j ndi . properti es file located in the application’s
run directory. Next, the JNDI Dat aSour ce constructor locates the installed

25 of 69

dbMapper User Guide

j avax. sql . Dat aSour ce object that is bound to the JNDI path. The reference to the
j avax. sql . Dat aSour ce object is saved and kept for later reference.

The JNDI Dat aSour ce simply invokes the get Connect i on() method of the underlying
j avax. sql . Dat aSour ce object each time the get Connect i on method is invoked. The
r el easeConnect i on method simply frees all the resources acquired by the database connection.

The j ndi _dat a_sour ce element contains all the information that is needed to create a
JNDI Dat aSour ce object.

<! ELEMENT j ndi _data_source EMPTY>
<I' ATTLI ST j ndi _data_source jndi _| ocati on CDATA #REQUI RED>

The j ndi _dat a_sour ce element has single j ndi _| ocat i on attribute:

Attribute Description Required
j ndi _l ocat i on|The JNDI-path of the installed j avax. sql . Dat aSour ce object.|Yes

3.3.24 custom dat a_sour ce Element

In some cases, an application programmer may wish to create a mapper that uses a custom implementation
of the Dat aSour ce interface. This may be done if none of the above (three) Dat aSour ce
implementations provided by dbMapper meets the application’s special processing needs.

The cust om dat a_sour ce element is used to create and initialize such custom or third-party

Dat aSour ce implementations. The dbMapper requires the user to specify the fully qualified name of
the custom class that implements the Dat aSour ce interface. The custom implementation may define a
set of simple name-value (St ri ng) properties to customize the Dat aSour ce object at instantiation. In
order to pass these properties during object construction, the dbMapper expects the custom implementation
to define a publ i ¢ constructor with following signature:

public <class nanme> (java.util.Properties)

<! ELEMENT custom data_source (property)+>
<I' ATTLI ST custom data_source cl ass CDATA #REQUI RED>

<I ELEMENT property EMPTY>

<I ATTLI ST property name CDATA #REQUI RED>
<! ATTLI ST property val ue CDATA #REQUI RED>

The cust om dat a_sour ce element has single mandatory cl ass attribute:

Attribute | Description Required
cl ass |The fully qualified class name of the class that implements the Dat aSour ce Yes
interface.

The cust om dat a_sour ce element can contain any number of pr opert y elements. These
name/value pair properties are used to customize the Dat aSour ce during object instantiation. Each
pr operty element has two attributes:

Attribute | Description Required

namne The name of the property to set.|Yes

26 of 69

dbMapper User Guide

Val ue ‘The value of the property. ‘Yes ‘

3.3.3 nappi ng_cont ext s and mappi ng_cont ext Elements

The mappi ng_cont ext s element lists a set of mapping contexts. This element may contain any
number of mappi ng_cont ext elements. Each mappi ng_cont ext element defines a single mapping
context. Each mappi ng_cont ext element requires a unique i d attribute value so that the element may
be uniquely identified among other mappi hg_cont ext elements defined in the same mapper
configuration file. An application instantiates mappers that use specific mapping contexts by supplying the
i d of the desired mapping context in the DBMbdul e. cr eat eDef aul t Mapper method.

<! ELEMENT mappi ng_cont exts (mappi ng_context) +>

Each mappi ng_cont ext element represents a mapping context that encapsulates the information needed
by a mapper object to implement relation database persistence for a set of Java classes.

<! ELEMENT mappi ng_context (or_mapping_files)>
<! ATTLI ST mappi ng_context id CDATA #REQUI RED>
<! ATTLI ST mappi ng_context data_source_id CDATA #REQUI RED>

The mappi ng_cont ext element defines two mandatory attributes, namely i d and

dat a_source_i d. Thei d attribute uniquely identifies the mappi ng_cont ext among others defined
in the same mapper configuration file. The dat a_sour ce_i d refers to a dat a_sour ce el enent
that must be defined in the data source section of the mapper configuration file.

Attribute Description Required

id The mappi ng_cont ext identifier. It must be unique. Yes

dat a_sour ce_i d|Identifier of the data source associated with this mappi ng_cont ext .|Yes

The mappi ng_cont ext element contains an element named or _mappi ng_fi | es. That is described
in the following section.

3.3.3.1 or_mapping files andor_rmappi ng_fil e Elements

Anor _mappi ng_fi | es element, which represents a mapping set, is defined by a set of

or _mappi ng_fil e elements. Each or _mappi ng_fi | e element specifies the name of an object-
relational (OR) mapping file. (Refer to the “Creating an Object-relational (OR) Mapping File” section for
details of OR mapping files).

By default, all class mappings of a mapping file specified by an or _mappi ng_f i | e element are used.
However, a specific subset of the class mappings may be selected by using either an

i ncl udes_nmappi ng_set or an excl udes_mappi ng_set element. Ani ncl udes_nmappi ng_set
element specifies a specific subset of mappings to be used from the file; all others are excluded. An

excl udes_mappi ng_set element is used to exclude specific mappings from the mapping set. Each
mapping in an i ncl udes_nappi ng_set or an excl udes_nmappi ng_set element is specified by its
mappi ng cl ass and mappi ng t ag attributes, which uniquely identify it.

<! ELEMENT or _mappi ng_files (or_mapping_file)+>
<! ATTLI ST or_napping_file path CDATA #REQU RED>

<! ELEMENT i ncl udes_mappi ng_set (mappi ng) +>

27 of 69

dbMapper User Guide

<! ELEMENT excl udes_mappi ng_set (mappi ng) +>

<! ELEMENT nmappi ng EMPTY>
<! ATTLI ST mappi ng cl ass CDATA #REQUI RED>
<! ATTLI ST mappi ng tag CDATA #l MPLI ED>

Note that one motivation for defining a mapping set (i.e. an or _nmappi ng_f i | es element) as a set of
files, is to allow different mapping sets to share commons subsets of mappings. This may be done by
putting the mappings to be shared into one or more mapping files, then listing those same files in the
different mapping set definitions.

Finally, note that every mapping set specified by an or _mappi ng_fi | es element must satisfy the
following two requirements. Otherwise, a run time exception will be thrown by the dbmapper package.

1. A mapping set must not contain multiple mappings for the same Java class. For example, if an
or _mappi ng_f il es element specified two different mapping files, each containing a mapping for
the same Java class, the resulting or _mappi ng_f i | es element would not be valid. As another
example, even if an or _mappi ng_fi | es element contained a single file that defined two mappings
for the same class (each with a different tag), that would also be an invalid.

2. A mapping set must not contain unresolved mapping class references. For example, an
or _mappi ng_fi | es element might contain a file that defines a mapping for a complex class,
named Somed assA, which contains a field of a class SoneCl assB. If none of the mapping files
specified in the or _mappi ng_fi | es element contains a mapping for SomeCl assB, then that
or _mappi ng_fil es element is invalid.

3.4 Creating a Database Connection File

This section discusses the format, settings, and validation rules of the XML files used by the

Basi cDat aSour ce and Connect i onPool Dat aSour ce objects to locate and connect to a JDBC-
capable relational database. These XML files, which are referred to as database connection files, specify
the information necessary to obtain a connection to a database server. A database connection file specifies
the following settings:

Setting Description Required
Nane The name of the database connection information. No
engi ne The persistence engine for the database server. At present, this setting is not used. |No
driver The JDBC-driver class name for this data source. The driver is obtained from the |Yes
JDBC Dri ver Manager and must be located in the class path.
url The JDBC URL for this data source of the form Yes
j dbc: subpr ot ocol : subnane.
user _nane |The username used to log in to the database. Yes
passwor d |The password used to log in to the database. Yes

3.4.1 DTD for Database Connection Files
For validation, database connection files should include the “ db_connecti on. dt d” document type

definition (DTD) provided with the dbMapper package. That file is included in the “lib/dbmapper.jar” file
of the dbMapper distribution. The contents of the database connection file DTD is:

28 of 69

dbMapper User Guide

<?xm encodi ng="UTF- 8" ?>

<I ELEMENT connection_info

((driver,url,user_nane, password)| (url,driver, user_nane, password)) >
<I ATTLI ST connection_i nfo name CDATA #l VPLI ED >

<! ATTLI ST connection_i nfo engi ne CDATA #| MPLI ED >

<! ELEMENT dri ver (#PCDATA) >
<! ELEMENT url| (#PCDATA) >
<! ELEMENT user _name (#PCDATA) >

<! ELEMENT password (#PCDATA) >

3.4.2 Sample Database Connection File

For example, the following file could be used to obtain database connections using an Oracle 8 thin driver,
use:

<?xm version="1.0"?>
<! DOCTYPE connection_i nfo PUBLI C "DBMapper Database Connection”
“http://ww. onsd. nec. com sof t war e/ db_connecti on. dt d" >

<connection_i nfo name="defaul t" engi ne="oracl e">
<driver> oracle.jdbc.driver.Oacl eDriver </driver>
<url > jdbc: oracl e: thin: @yhost: 1521: oracl e_si d</url >
<user_name> scott </user Name>
<passwor d> tiger </password>

</ connecti on_i nf o>

3.5 Creating an Object-relational (OR) Mapping File

An object-relational (OR) mapping file, or simply mapping file, is an XML file that specifies the object-
relational mappings for one or more Java classes. This section discusses the file format, settings, and
validation rules of such files. To see how these files are used in mapper configuration files, refer to the
“or_mapping_files and or_mapping_file Elements” section. The DTD for mapping files, which is named
“db_or _mapping.dtd”, is included in the “lib/dbmapper.jar” file of the dbMapper distribution.

An OR mapping file contains a single mappi ngs element. The mappi ngs element consists of a set of
mappi ng elements. Each mappi ng element represents a mapping between a Java class and the relational
table that will be used to store object instances of the class. Each mappi ng element is composed of a

cl ass attribute, a t abl e attribute, an optional pk_cl ass attribute, an optional t ag attribute, an
optional dao_cl ass attribute and several f i el d elements. The cl ass attribute specifies the fully
qualified class name of the class that is being mapped, which is sometimes referred to as the mapped class.
The t abl e attribute contains the name of the relational table that will be used to store object instances of
the mapped class. The pk_cl ass attribute specifies the primary key class, if any, for the mapping. The

t ag attribute is used to differentiate between two or more mappings defined for the same class. The
dao_cl ass attribute specifies the fully qualified class name of the DAO class tobe used for this mapping.
Each f i el d element represents a Java field of the mapped class and holds the information used to store it
in the database. Eachfi el d element is composed of an i d attribute, an i S_key attribute, an optional
get _net hod element, and an optional set _met hod element. The i d attribute denotes the ID of the
field being mapped. The value of i d can be any string, but must be unique among the other field i d

29 of 69

dbMapper User Guide

values for the class being mapped. The i s_key attribute indicates whether the field is a key field. The
get _net hod and set et hod elements specify the field’s accessor and modifier method names,
respectively (as they appear in the Java code for the mapped class). Additionally, each f i el d element
must contains exactly one of the following elements, which specify the field type: basi c_t ype,

nest ed_t ype, conpl ex_type,orconpl ex_col | ecti on_type. (Follow the hyperlinks for a
detailed description of these elements.)

3.5.1 nappi ngs and mappi ng Elements

The mappi ngs element is the root element of an OR mapping file. It can contain any number of
nmappi ng elements.

<! ELEMENT mappi ngs (nappi ng) +>

The mappi ng element represents a class mapping and contains all of the information, such as table name,
primary key, mapping tag, Java field mapping, etc., needed to map a Java object to a relational database.
The class that is being mapped is referred to as a mapped class.

The dbMapper package does not create any of the relational tables that are specified in the mapping file. It
is up to the application programmer to make sure that all of the tables specified in the mapping file are
created with the appropriate key relations, indices, and database constraints before the mapping is actually
used for any database operation. This approach was taken to provide maximum flexibility in creating
database schema, and to decouple any database vendor specific dependencies (e.g. schema syntax,
restrictions such as reserved keywords, table name length etc.) from the dbMapper package.

<! ELEMENT mappi ng (field)+>

<! ATTLI ST mappi ng cl ass CDATA #REQUI RED>

<! ATTLI ST mappi ng t abl e CDATA #REQUI RED>

<! ATTLI ST mappi ng pk_cl ass CDATA #| MPLI ED>
<! ATTLI ST mappi ng tag CDATA #l MPLI ED>

<! ATTLI ST mappi ng dao_cl ass CDATA #| MPLI ED>

A mappi ng element has five attributes:

Attribute Description Required
cl ass The fully qualified class name of the class that is being mapped. Yes
tabl e The relational table that will be used to store object instances of the mapped class. | Yes

pk_cl ass |The fully qualified class name of the primary key, if any, for the mapped class. |No
For more information on primary key class, please refer to the “Primary Key”
section.

tag The mapping tag. This attribute is required when multiple mappings are defined |No
for the same class. The combination of cl ass and t ag, which serves as an
identifier for a mapping, must be unique among all mappings used by any single
mapping context.

dao_cl ass |The fully qualified class name of the DAO class for this mapping. No

Note that the dao_cl ass attribute is optional. If a value is not specified, an instance of the

Def aul t DAO npl class is automatically instantiated and used. Otherwise, the Def aul t Mapper
instance that uses this mapping will instantiate and use an instance of the specified DAO class. The
specified DAO class must provide one of the following constructors. If both constructors are defined, the
first will be used.

30 of 69

dbMapper User Guide

e public MyConpl exDAQ(Def aul t Mapper mapper). A public constructor with a single
argument of type Def aul t Mapper . The napper argument will contain a reference to the mapper
that is instantiating this DAO instance.

e public MyConpl exDAQ(). A public constructor with no arguments.

The mappi ng element contains several f i el d elements that map the Java fields of the mapped class to a
relational table (column, row or set of rows). Only those Java fields that are intended to be stored in the
database should be specified (i.e. any fields of a Java class that are not specified in the mapping are not
persisted by the dbMapper package).

3.5.2 fieldElement

The f i el d element specifies the mapping between a Java field and the relational table that will store the
field value. Depending on the field type, a field may be stored in a single SQL column, a single table row,
or a set of table rows.

<! ELEMENT field (get_nethod?, set_net hod?,

(basi c_type| nested_type|col | ection_type| conpl ex_col |l ection_type))>
<I ATTLI ST field id CDATA #REQUI RED>

<IATTLIST field is_key (true|false) 'false' >

A fi el d element has the following properties:

Attribute/ Description Required
Element
id Specifies the ID of the field that is being mapped. The value of i d can be any |Yes

string, unique among the other field i d values for the class being mapped

i s_key Specifies whether this is a key field for the mapped class. A key field must be of [No
basic type. By default, itissetto ‘' f al se’ .

get _met hod |Specifies an accessor method on the mapped class to be used to get the value of |No
this field.

set _met hod |Specifies a modifier method on the mapped class to be used to set the value of |No
this field.

When a get _met hod or set _ret hod is not specified, the dbMapper package automatically constructs
the names of those accessor and modifier methods (if and when they are needed) using the Sun JavaBean
design pattern (i.e. the pattern where “get ” or “set ” is prepended to the field ID, with its first letter
capitalized). For example, if a get _met hod is not specified for a field with an ID “si ze” of type

My Type, the dbMapper automatically constructs and uses the following accessor method signature:
“public MyType get Si ze() ”. Similarly, the automatically constructed modifier signature would be
“public void setSize(MType)”. Thus,the get _net hod and set _net hod elements need
only be specified when the mapped class does not provide these methods using the Sun JavaBean design
pattern.

3.52.1 is_key Attribute

Some (but not all) of the DBI nt er f ace operations require the dbMapper to locate a unique database
record that corresponds to the object being operated on. For example, if the updat e() method is called
on some object, the dbMapper must be able to unambiguously identify the database record that needs to be
updated. For this reason, the dbMapper uses the concept of primary keys and key fields as described in the

31 of 69

dbMapper User Guide

“Key Fields and Primary Keys” section. If the field represented by f i el d is a key field, then itsi S_key
attribute should be setto t r ue. (If a mapping does not have any key fields, then that mapping does not
specify a primary key.) Typically, it makes sense to define the primary key of a mapping to match the
primary key used by the corresponding database table where the objects of the mapped class are stored.

As noted above, only some of the DBl nt er f ace operations require that a mapping include a primary
key. Therefore, the specification of a primary key for a mapping is optional. Note however that for those
mappings that do not specify a primary key, the following methods and features are not supported™:

e update()

e updateTree()

e del eteByPrimaryKey()

e findAllPrimaryKeys()

e findByPrimaryKey()

e findPrimaryKeysByAttributes()
e findPrimaryKeysByQuery()

e delete()

« conplex fields

e conplex collection fields

Note 1: If a primary key has more than one key field, then it is referred to as a composite primary key.

Note that in this case, the user must define a primary key class to use those methods of the DBI nt er f ace
that include the string “PrimaryKey” in their name. Refer to the “Key Fields and Primary Keys” section for
a definition of “primary key class”.

3.5.2.2 get_net hod Element

The get _net hod element specifies the accessor method of the mapped class for this f i el d element.
<! ELEMENT get _met hod (#PCDATA) >

3.5.2.3 set_net hod Element

The set _net hod element specifies the modifier method name of the mapped class for this f i el d
element.

<! ELEMENT set _met hod (#PCDATA) >

3.5.2.4 Field Type
The dbMapper package provides persistence for four field types: basic, nested, complex, and complex
collection fields. (Refer to the “Field Types” section for details.) This section defines the XML elements

that specify the information needed to support persistence of these field types.

3.5.2.4.1 basi c type Element

The basi ¢c_t ype element contains all of the information needed to map a basic field to the database.

The only information needed by the Def aul t Mapper class to map this type of field is the name of the
database column used to store it. By default, the Def aul t Mapper class assumes that the name of the
column is the same as the ID of the f i el d. This default column name can be overridden by specifying the
name of the database column in the col urmm attribute. This information is captured in the DTD in the
following lines:

<! ELEMENT basi c_type (#PCDATA) >

32 of 69

dbMapper User Guide

<I ATTLI ST basic_type col utmm CDATA #| MPLI ED>

3.5.2.4.2 nested type Element

A field is said to be a nested field if it is mapped to a single SQL column of the same database table that
stores the containing object, and the field is nested within another field of the mapped class. Let us have
another look at an example that was used in the “Field Types” section, to introduce some terminology
associated with the nest ed_t ype element.

The following example uses the OR mapping between the Per son class and the per son_t abl e table.
The Per son class contains five nested fields, namely addr ess. street, address.city,
address. state, address. zip.zi pCode and addr ess. zi p. zi p4Code:

class Zip {
int zi pCode;
int zi p4Code;

cl ass Address {
String street;
String city,
String state;
Zip zi p;

}

cl ass Person {
String firstNane;
String |astNane;
int soci al SecNum
bool ean i sLi ving;
Addr ess address;

create table person_table (
firstnane VARCHAR(64),
| ast nane VARCHAR(64) ,

ssn | NTEGER,
l'iving CHAR(1),
street VARCHAR(64) ,
city VARCHAR(64) ,
state CHAR(2),
zZip | NTEGER,
zi p4 | NTEGER

)

Notice that the addr ess. zi p. zi pCode nested field (or simply zi pCode nested field) is mapped to
the zi p SQL column of per son_t abl e. A nested field is described by listing all the intermediate fields
separated by periods (i.e. dots), and finally the target field. This sequence of fields describing a nested field
is called a nested attribute path. The intermediate fields nodes are referred to as intermediate nodes of the
path, and the target field (last element in the path) is called the leaf node. For example, the

address. zi p. zi pCode nested attribute path contains two intermediate nodes, namely addr ess and
zi p,and a zi pCode leaf node. The target field (i.e. the leaf node) in a path must be of basic type, so that
it can be mapped to a single SQL column.

The nest ed_t ype element contains all of the information needed to map a nested field to the database.

<! ELEMENT nested_type ((internedi ate_node) +, | eaf _node) >
<I ATTLI ST nested_type col um CDATA #REQUI RED>

33 of 69

dbMapper User Guide

The nest ed_t ype element contains a single mandatory col urm attribute that specifies the database
column to which the nested attribute is being mapped. The nest ed_t ype element consists of a series of
i nt er medi at e_node elements, terminated by a| eaf _node. These node elements capture the nested
attribute path as described above.

<! ELEMENT i nt er medi at e_node (get_met hod?) >
<! ATTLI ST i nter nedi at e_node node_i d CDATA #REQUI RED>
<I ATTLI ST i ntermedi at e_node cl ass CDATA #REQUI RED>

Ani nt er medi at e_node of a nested path has three settings, node_i d, cl ass, and get _mnet hod.
The cl ass attribute specifies the fully qualified class name of i nt er medi ate_fi el d. Thei d
attribute is the ID of i nt er medi at e_node. The optional get _met hod element specifies the accessor
method that is used by the parent class to access the value of this node. If get _nmet hod is not specified,
the dbMapper package assumes that the mapped class provides such a method, and that its signature
follows the Sun JavaBean pattern. Refer to the “Field Element” section for a description of the Sun
JavaBean pattern, and an example.

Setting Description Required
node _id The ID of the intermediate node. Yes

cl ass The fully qualified class name of the intermediate field/node. | Yes

get _met hod | The accessor method name for this intermediate node. No

<! ELEMENT | eaf _node (get_nethod?, set_net hod?) >
<I ATTLI ST | eaf _node node_i d CDATA #REQUI RED>
<l-- | eaf _node class should be of basic_type -->
<! ATTLI ST | eaf _node cl ass CDATA #REQUI RED>

A | eaf _node element contains all the i nt er medi at e_node settings plus an optional set _nret hod
setting. The set _met hod element specifies the modifier method that is used by the parent object to set
the value of this node. If set _met hod is not specified, the dbMapper package assumes that the mapped
class provides such a method, and that its signature follows the Sun JavaBean pattern. Refer to the “field
Element” section for a description of the Sun JavaBean pattern, and an example.

Setting Description Required
node_id The ID of the leaf node. Yes
Cl ass The fully qualified class name of the leaf field/node. The class must be one that | Yes
corresponds to a basic field type. Refer to the “Basic Field” section for a list of
such types.
get _met hod | The accessor method name for this leaf node. No
set _met hod | The modifier method name for this leaf node. No

In our example, the dbMapper would simply use the following code to access the
address. zi p. zi pCode nested field of a Per son object (assuming that no custom get or set methods
are specified for these fields):

person. get Address(). getZi p(). get Zi pCode()

If any of the intermediate accessor methods return a nul | object, the dbMapper acts as if the leaf field
(zi pCode) was nul I .

34 of 69

dbMapper User Guide

To modify the addr ess. zi p. zi pCode nested field in a Per son object, the dbMapper would simply
use:

person. get Address() . get Zi p() . set Zi pCode(newZi p)

Note that the dbMapper package never attempts to instantiate intermediate nodes for a leaf node. For
example, if the DBI nt er f ace. cr eat e() method is invoked on an object with nested fields whose
intermediate nodes have not been instantiated, the leaf nodes will not be loaded from the database. In fact,
any time that a get method for an intermediate node returns a nul | value, the attempt to reach the leaf
node is terminated. Thus, it is up to the application programmer to ensure that intermediates nodes are
instantiated, if any operations on leaf nodes are to be executed. Also, note that the dbMapper does not treat
anul | return value from a get method as an error. Rather, the processing for the leaf node is simply
considered to be complete, even though the leaf node was never reached.

3.5.243 conpl ex type Element

The conpl ex_t ype element contains the information needed to map a complex field to the database. A
conpl ex_t ype element consists of one el enent _napr ef element and one key_bi ndi ngs
element. The el enent _mapr ef element specifies the mapping to be used for this complex field. In
other words, the complex field class must be a mapped class itself. The mapping of this mapped class is
used to persist the complex field value to the database. The key_bi ndi ngs element specifies the
relationship between the key fields of the containing class and the fields of the complex field itself.

<! ELEMENT conpl ex_type (el enent _mapr ef, key_bi ndi ngs) >

Please refer to the “element mapref Element” and “key_bindings Element” sections for details.

3.5.2.4.4 el enent napref Element

When specifying the mapping for a complex or complex collection field, one must specify the exact
mapping that should be used to persist the field. If only a single mapping exists for the Java class of the
complex field, then it is sufficient to specify only the cl ass attribute to uniquely specify that mapping.
However, if more than one mapping exists, it is necessary to specify both the cl ass and t ag attributes to
uniquely identify the mapping.

<! ELEMENT el enent _napref EMPTY>

<I ATTLI ST el enent _mapref class CDATA #REQUI RED>
<! ATTLI ST el enent _mapref tag CDATA #l MPLI ED>

The el enent _nmapr ef element has two attributes:

Attribute | Description Required
cl ass |The fully qualified class name of the field that is being mapped. Yes
t ag The mapping tag. This attribute is needed if the desired mapping uses a non-default |No

tag.

3.5.2.45 key bindi ngs Element

The dbMapper assumes that complex fields are not stored in the same table as the containing object.
Because of this assumption, the dbMapper needs enough information to unambiguously correlate complex
field entries (which reside in one table) to their containing objects (which reside in a different table). The

35 of 69

dbMapper User Guide

dbMapper maintains this association by requiring that each complex field store the key of its containing
object.

This association between the complex field and its containing class is referred to as a key binding, and is
represented by the key_bi ndi ngs element. The key_bi ndi ngs element is composed of multiple
key_bi ndi ng elements. Each key_bi ndi ng element associates one fieldsof the containing class,
represented by the par ent _fi el d element, with a field of the complex field, represented by the

chil d_fi el d element. Normally, a key_bi ndi ng element is specified for each of the key fields of
the containing class. In other words, Nkey_Dbi ndi ng elements would normally be defined for a parent
class with a composite key consisting of N fields.

<! ELEMENT key_bi ndi ngs (key_bi ndi ng) +>

<! ELEMENT key_bi ndi ng EMPTY>
<! ATTLI ST key_bi ndi ng parent field CDATA #REQUI RED>
<! ATTLI ST key_binding child_field CDATA #REQUI RED>

As an example, consider a Per son class that contains a complex field, house, of the type House.
Assume that the Per son class has a basic field called, nane, which is its key. Also, assume that the
House class has a basic field (of the same type) called owner. The owner field is used to store the namne
value of the containing Per son object. In this case, the dbMapper package must know that the owner
field of the House class corresponds to the namne field of the Per son class. This type of information is
captured in the key_bi ndi ngs element. For this example, the House class would define a single
key_bi ndi ng, with nan®e as the value of the par ent _fi el d element, and owner as the value of the
child_fi el delement.

3.5.24.6 conplex collection type Element

The conpl ex_col | ecti on_t ype element contains the information needed to map a complex
collection field to a relational database.

<! ELEMENT conpl ex_col | ecti on_type

((el ement _napr ef, cont ai ner _cl ass, key_bi ndi ngs)
| (cont ai ner _cl ass, el enent _mapr ef , key_bi ndi ngs)) >

The conpl ex_col | ecti on_t ype element is composed of one el enent _mapr ef element, one
cont ai ner _cl ass element, and one key bi ndi ngs element.

The el ement _mapr ef element specifies the OR mapping that is used to persists the elements of the

array or collection to the database. Please refer to “element_mapref Element” section for details.
The cont ai ner _cl ass element specifies the collection type.

<! ELEMENT cont ai ner _cl ass (#PCDATA) >
If the fields are stored in an array, the dbMapper expects the following signature for cont ai ner _cl ass:
<fully qualified class name of the array elements> [].

Note that the class name will be the same as that used for the el enent _cl ass element, and that the
value ends with "[]".

The following example shows how the container class for an array of nypkg. MyCl ass objects would be
specified:

36 of 69

dbMapper User Guide

<cont ai ner _cl ass> mypkg. My ass[] </ contai ner_cl ass>

When the complex collection field uses a collection type (instead of an array), the cont ai ner _cl ass
must specify the fully qualified class name of the container class that is used. The dbMapper expects the
container class to implement the j ava. uti | . Col | ecti on interface and to provide a public default
constructor (i.e. a constructor with no arguments). The following example shows how the container class
would be specified for a complex collection field that uses the j ava. uti | . ArrayLi st class as the
container.

<contai ner _class> java.util.ArrayLi st </container_cl ass>

The conpl ex_col | ecti on_t ype element defines a key _bi ndi ngs element to specify the
relationship between the entries stored in the collection/array and the key fields of the containing class.
Please refer to the “key_bindings Element” section for details.

3.5.3 Primary Key Class

Although the dbMapper does not mandate that an OR mapping define a primary key class, in some cases it
may be desirable. As the primary key represents the identity of a persistent user object, a client application
may save this data elsewhere, e.g. in memory or in a file, so that the key may later be used to obtain the
user object from the database. The primary key can also be useful in cases when a user object contains
many attributes and requires a large amount of memory. In this case, it may make sense for the application
to maintain a collection of keys, rather than a collection of the entire object instances. Specific object
instances can then be retrieved, as needed, using the keys in the collection.

Note that a class mapping must be provided for any primary key class that is used by the dbMapper
package.

4 Developing With dbMapper

To use dbMapper, you will need access to a relational database server and Java class libraries that include a
JDBC 2.0 compliant driver class. The examples provided with the dbMapper distribution have been tested
with a variety of JDBC-capable RDBMS products, such as Oracle 8.0 and 8i (http://www.oracle.com/),
MySQL 3.23.39 (http://www.mysql.com/), PostGres 7.2.2 (http://www.postgresqgl.org/), HyperSonic
Database 1.7.1(http://hsgldb.sourceforge.net/).

The dbMapper distribution includes all of the files needed to run the examples, including database schema
files that may be used to create the relation tables required to run the examples. Those files are located in
the sql directory. A sample database connection file is also provided for Oracle, MySQL, PostGres and
HyperSonic database products. These file are used to locate and connect to database servers. You should
edit one of these files, or create a new one to reflect the settings of the particular relational database server
that you plan to use. The dbMapper distribution also includes the mapper configuration and OR mapping
files used in the examples.

The database connection file used in the following examples uses the Oracle 8i thin driver class provided
by Oracle. However, the examples may be run with any RDBMS product that comes with a JDBC 2.0
complaint drive, provided that the database connection file is modified accordingly, and the schema file is
modified, if needed, to support any vendor-specific syntax. Before running any of the examples, first make
sure the following system requirements are met:

4.1 System Requirements
To use dbMapper, you must add the following libraries to your CLASSPATH.

37 of 69

dbMapper User Guide

Included
Jar Name Needed For Available At with the
distribution?
tS:)gi JSaJI’ ér JDK 1.3 or later http://java.sun.com/ No
dbmapper . j ar |The dbMapper library with the distribution Yes
| ogdj . j ar apache | 0g4j classes (1.1.3 or http:/jakarta.apache.or |Yes
' later) used by dbmapper . j ar g/logdj/
xerces.jar Xerces XML parser (1.4.3 or later) hitp://xml.apache.org/x | Yes
erces/
: : jdom 1.0 or later, parse OR " Yes
; tp://j .org
jdomj ar mapping XML file http://jdom.org/
J.D BC drlve.r (Ex: Oracle drivers No
library provided by |database tasks)
http://www.oracle.com)
database vendor

The binary distribution of dbMapper includes all the jar files except the database vendor JDBC driver
libraries. Refer to your database product manuals to locate the JDBC library (with . j ar or. zi p
extension). For example the Oracle JDBC library, can be located at:

$ORACLE_HOVE/ j dbc/1i b/ cl asses12. zip (Unix) OR
YORACLE_HOVE% j dbc\ |i b\ cl asses12. zi p (W ndows) .

where ORACLE_HQOVE is the directory where the Oracle server or client is installed.

4.2 Installation Tasks

The dbMapper distribution includes a number of examples that are easy to run, and demonstrate major
features of dbMapper package. You can review the Java source files of the examples to see how they work.

Before running any of the examples, please finish the following tasks:

1. Setup your cl asspat h (see “System Requirements” section). Make sure ‘. * (current directory)
is in your ¢l asspat h.

2. Make sure the JDK is in your pat h. Set the JAVA HOME environment variable to the directory
where the JDK is installed. Go to the JDK installation page
(http://java.sun.com/j2se/1.3/install.html) and follow the directions for your platform.

3. Locate the JDBC library (with . j ar or. zi p extension) for your RDBMS vendor. Add this to
your cl asspat h.

Some additional tasks need to be completed before the examples can be run. Refer to the “Running the
Examples” section for details.

4.3 Building the dbMapper Package

This section provides a reference to the build options that are provided with the dbMapper package.
However, note that unless the Java source code files are modified, there is no need to run any build
commands, as the dbMapper distribution itself includes compiled code and javadoc for all classes.
However, you will need to compile the examples, if you wish to run them. Refer to the next section for
instructions.

38 of 69

dbMapper User Guide

Before attempting any of the build commands, be sure to first finish the installation tasks of the previous
section. When finished, go to the root directory of dbMapper distribution.

To build the dbMapper package you must have Ant 1.2 or later installed. You can download the latest
version of Ant from http://jakarta.apache.org/builds/ant. Make sure that Ant is in your pat h. Also, set
the ANT__HOME environment variable. This should be set to the directory where Ant is installed.

To build the entire dbMapper distribution (library jar files and javadoc API documentation), simply type

ant
To build only the dbMapper library jar files, use
ant lib

To build only the javadoc API documentation, use
ant javadoc

To remove all class files, including those in the original distribution, use
ant cl ean

4.4 dbMapper Examples

The dbMapper distribution includes a set of examples that demonstrate various capabilities of the
dbMapper package. Each example is contained in a subdirectory of the “examples” directory. This section
describes the organization of the examples, and how to run them. Note that each example provides both
“bat” files and “sh” files, so that the examples can be run in Windows and Unix environments. This
document assumes that the user is working in the Windows environment, and so will refer to the “bat” files
only.

4.4.1 Running the Examples

This section describes how to run the examples. Before running them, you will first need to set up your
environment properly, and compile them. The following subsections provide instructions to do this. Note
that the last example, which is an EJB example, is organized slightly differently. Refer to the EJB example
section for details.

4.4.1.1 Setting Up Your Environment

Before running the examples, it is necessary to set some environment variables. To do this, first open up
the myenv. bat file located in the root directory of the dbMapper distribution. Examine the various
settings, and adjust them as needed for your configuration. After saving your editing changes, run

nyenv. bat . This will give you the environment needed to run the examples.

4.4.1.2 Example Directory Structure

Each example has its own directory under the exanpl es directory. The name of the example directory
gives some indication of the principles that the example demonstrates. Each example directory contains the

following subdirectories:

* src — the source code for the example.
* classes - the compiled class files for the source files in “src”
e data - the XML data files needed for the example

4.4.1.3 Compiling an Example

39 of 69

dbMapper User Guide

To compile an example, simply run the conpi | e. bat script in the example directory. The compiled
“class” files will be written to the cl asses directory.

4.4.1.4 Running an Example

Before running an example, you must take care of two more things. First, you must create the tables
needed by the examples. To do this, use the cr eat e. sql schema file in the sql directory.

Secondly, you must modify the dat a/ db_connecti on. xmi file of the example to match your
database settings. The files included with the distribution contain settings for an Oracle database. If you
are using a different database product, you must modify dat a/ db_connecti on. xm to use the settings
for that database product. Examples for several database products are provided in the subdirectories of the
sql directory. Also, if you plan to use the same database and database user for all of the examples, you
may want to copy the modified connection file that you create to the dat a directories of the other
examples, as well.

If your database is up and running, you can now run the example by executing the r un. bat script. The
output that is written to your terminal is also written to the dbdeno. | og file.

4.4.2 Examplel — DataSources

In this example, we demonstrate how to create and configure the different types of data sources provided
by the dbMapper package. If you have not done so already, please first read the “data_sources and
data_source Element” section. Later in this example, we will also create and use a custom implementation
of the Dat aSour ce interface.

Before using any of the dbMapper classes, the dbMapper package should first be initialized by invoking the
static init(String mapper Confi gFi | e) method of the DBMbdul e singleton class. The

i ni t method takes a mapper configuration file as the only argument. The following code snippet is taken
from the Test . j ava file (in the exanpl es\ ex01- dat asour ces\ sr ¢ directory):

DBMbdul e dbm = DBMbdul e.init (mapperFile); // nmapperFile is set to
dat a/ dbrmapper. xm file path

Before proceeding any further, let us first look at the content of the dbmapper . xm file:

<?xm version="1.0"?>
<! DOCTYPE root PUBLI C "DBMapper Config" "http://ww.onsd. nec. com sof t war e/ dbmapper. dtd" >
<r oot >

The first line is simply an XML prolog or header statement that indicates that our document uses version
1.0 of XML. The second line in above snippet indicates that the XML document is validated using the
“dbmapper . dt d” DTD file and “r oot ” is the root element of our document.

<dat a_sources>

<!-- basic connection manager with no maxi mum bound on connections -->
<dat a_source i d="ds_basic">
<basi c_dat a_source
connection_info_file="data/db_connection.xm"
/>
</ dat a_source>

40 of 69

dbMapper User Guide

All the data sources managed by the singelton DBMbdul e object are defined within the

<dat a_sources> </ dat a_sour ces> XML tags. The last five lines in the above snippet define a
Basi cDat aSour ce object, named ds_basi c, that has no upper bound on the number of connections
held open by this data source at any given time.

<!-- connection pool -->
<dat a_source i d="ds_pool ">
<connecti on_pool
connection_info_file="data/db_connection.xm"

/>
</ dat a_source>

The above creates an infinitely growing Connect i onPool Dat aSour ce identified by ds_pool . The
ds_basi c data source provides a single database connection, while the ds_pool data source provides a
pool of connections, which may be useful for a multi-threaded application.

<!-- customdatasource : you can nodify this entry according to your

Dat aSource settings (class, jdbc information..)
-->

<dat a_source id="ds_custoni>
<cust om dat a_source cl ass="MyDat aSour ce" >

</ cust om dat a_sour ce>
</ dat a_sour ce>

The above defines a custom (user-defined) implementation of the Dat aSour ce interface, identified by
ds_cust om The XML settings and Dat aSour ce implementation are discussed in detail at the end of
this section.

</ dat a_sour ces>
<mappi ng_cont ext s>

<mappi ng_cont ext id="custonl data_source_i d="ds_custon' >
<or _mappi ng_fil es>
<or _mappi ng_fil e pat h="data/ or _mappi ng. xm "/>
</ or _mapping_files>
</ mappi ng_cont ext >

<mappi ng_cont ext id="basic" data_source_i d="ds_basic">
<or _mapping_files>
<or _mappi ng_fil e path="data/or_mappi ng. xm "/ >
</ or _mappi ng_fil es>
</ mappi ng_cont ext >

<mappi ng_cont ext id="pool" data_source_i d="ds_pool ">
<or _mappi ng_fil es>
<or _mappi ng_fil e pat h="dat a/ or _mappi ng. xm "/>
</ or _mapping_fil es>
</ mappi ng_cont ext >

</ mappi ng_cont ext s>

The first line in the above document fragment marks the end of the data source declarations. All of the
mapping contexts managed by the singelton DBMbdul e object are defined within the

<mappi hg_cont ext s> </ mappi ng_cont ext s> tags. The next few lines declare three mapping
contexts, namely cust om basi ¢ and pool . Each of these mapping contexts specify a data source
(defined within the <dat a_sour ces>. . </ dat a_sour ces> tags) and a mapping set (as defined by a
set of mapping files). For example, the “pool ” mapping context is created by specifying the “ds_pool
data source and the mapping set specified by the single mapping file named “or _nmappi ng. xni .

41 of 69

dbMapper User Guide

(Mapping sets and the mapping files that define them are discussed in detail in the next example(s). In this
example we will only concentrate on the data sources.)

</root >

The above line marks the end of the mapper configuration file.

Now lets get back to the rest of the code in Test . j ava. The next few lines show how to create a mapper
by specifying the mapping context identifiers defined in the mapper configuration file.

DBI nt er face pool DBI f = dbm creat eDef aul t Mapper (" pool ");
DBI nt erface basi cDBIf = dbm creat eDef aul t Mapper ("basic");
DBI nt erface custonDBIf = dbm creat eDef aul t Mapper ("custont);

The following code fragment performs a very basic test on these three mappers. For each mapper, the code
simply attempts to establish then release four database connections. This process is repeated one hundred
times in a loop. Upon invocation of the get Connect i on/ r el easeConnect i on methods, the
mapper simply returns the result of the get Connect i on/ r el easeConnect i on invocation on the
underlying Dat aSour ce object.

testDBIf (pool DBIf, "pool");
testDBIf (basicDBlf, "basic");
testDBIf (custonDBIf, "custoni);

}
void testDBIf (DBInterface dblf, String ifNane) throws Exception {
DBConnection[] connections = new DBConnection[4];
long startTinme = SystemcurrentTimeMI1is();
for (int i=0; i < 100; i++) {
for (int j=0; j < connections.length; j++) {
connections[j] = dblf.getConnection();

}

for (int j=0; j < connections.length; j++) {
dbl f. rel easeConnecti on (connections[j]);

}

}
Logger. debug ("ifNane[" + ifName + "] tine inns ="
+ (SystemcurrentTimeM I lis()-startTine));

}

After executing this example program, one can verify from the messages in the output log that the database
resources are most efficiently managed by the Connect i onPool Dat aSour ce data source, which
represents a pool of database connections.

Now let us look at the custom data source declared in the mapper configuration file:

<dat a_source i d="ds_custoni >
<cust om dat a_source cl ass="MyDat aSour ce">
<property name="driver" value="oracle.jdbc.driver.O acleDriver"/>
<property name="url"
val ue="j dbc: oracl e: t hi n: @wyhost . nydomai n. com 1521: or acl e_si d"/ >
<property nane="user" val ue="scott"/>
<property nanme="password" val ue="tiger"/>
</ cust om dat a_source>
</ dat a_source>

The dbMapper requires that the data source class, MyDat aSour ce, implement all methods of the

Dat aSour ce interface. The data source class is also expected to provide a public constructor that takes a
single input argument of type j ava. uti | . Properti es. When creating the custom data source object,
dbMapper (i.e. the DBMbdul e object) will use:

java.util.Properties props = new java.util.Properties();

42 of 69

dbMapper User Guide

props. set Property (“driver”, “oracle.jdbc.driver.OracleDriver”);
props. set Property (“url”,
"j dbc: oracl e: t hi n: @ryhost . mydomai n. com 1521: oracl e_si d");
props. set Property (“user”, “scott”);
props. set Property (“password”, “tiger”);
Dat aSource ds = new MyDat aSource (props);

The content of the custom data source class MyDat aSour ce follows:

...... /1 lnport statenents
public class MyDataSource inpl enents DataSource {
java.util.Properties connecti onArgs = null;
public MyDataSource (java.util.Properties props) throws Exception {
String jdbcDriverd assNane = props. getProperty ("driver");
connecti onArgs = props;
/1 Load the JDBC driver
Cl ass.forNane (jdbcDriverd assNane);
}

[*FEFFxxEAEEE | npl ement ati on of Dat aSource met hods **x****xxxxx/
/'l Returns a new JDBC connecti on wapped inside DBConnecti on.
publ i ¢ DBConnecti on get Connection() {
DBConnection dc = null;
String jdbcURL = connectionArgs. get Property ("url");
try {
j ava. sqgl . Connecti on conn = Driver Manager. get Connection (j dbcURL,
connecti onArgs);
dc = new DBConnecti onl npl (conn);

}
catch (Exception e) {
Logger.error ("Error creating connection. Details: ", e);

return dc;

}

/| Rel ease an previously opened DBConnecti on.
public void rel easeConnecti on (DBConnecti on conn) {
((DBConnectionl npl) conn).destroy();

4.43 Example2 — Basic Type

This example uses a very simple class named Pri mi ti ve. j ava, which has two basic fields, to
demonstrate step by step, the simplicity of using the dbMapper package. Lets first look at
Primtive.java:

public class Primtive {
int x; // Primary key attribute
String vy;

/1l The no-argunent constructor, required by dbMapper
public Primtive() { x =0; y =null; }

public Primtive(int _x, String _y) { x = _Xx; v =_y; }
/'l Accessor nethods

public int getX() { return x; }

public String getY() { returny; }

/1 Modifier nethods

public void setX(int _x) { x = _x; }

public void setY(String _y) { vy = _y; }

43 of 69

dbMapper User Guide

Prim tive objects are persisted in the deno_pri m ti ve table, whose schema is defined by the
“creat e. sqgl ” file (located in the sanpl es directory):

create table denmo_primtive (
col _x | NTECER PRI MARY KEY,
col _y VARCHAR(64)

)

The dermo_pri m ti ve table defines two columns, named col _X and col _y, to store the X and y fields
respectively. A primary key (composed of single column, col _x) is created on the table to emphasize that
X is a key field, i.e. a Pri m ti ve object can be located in database by specifying the value of the field X.

The mapping file (located in exanpl es/ ex02- basi c_fi el ds/ dat a directory) specifies that the
deno_primtive table is to be used to store instances of the Pri mi ti ve. j ava class:

<?xm version="1.0"?>

<! DOCTYPE nappi ngs PUBLI C " DBMapper OR Mappi ng"
"http://ww. onsd. nec. coni sof t war e/ db_or _mappi ng. dt d" >
<!-- Set DID validation file -->

<mappi ngs>

<l-- Bind Primtive class to denp_printive table -->
<mapping class = "Primtive"
tabl e="deno_primtive" >
<l-- bind java int x to sqgl columm col _x:int (indicate x as key

attribute -->
<field id="x" is_key="true" >
<basi c_type col um="col _x">i nt </ basi c_type>
</field>
<l-- bind java String y to sql colum col _y:varcahr2(64)-->
<field id="y">
<basi c_type col um="col _y">String</basi c_type>
</field>
</ mappi ng>
</ mappi ngs>

Since the Pri mi t i ve mapping has only one key field, X, the j ava. | ang. | nt eger class (i.e. the
wrapper class for the primitive i nt type) can be used as the primary key for this mapping (see the “Key
Fields and Primary Key” section). Also note that the default column name for the field X is overridden by
col _x using the col um attribute, as described in the “basic type Element” section. (Similarly, the
default column name for y is overridden by col _y.)

The following code snippet shows how Pri mi t i ve object instances are created, deleted, modified, and
located in the deno_pri m ti ve table. First, the mai n method instantiates a Test object by passing a
mapper configuration file as the only argument. This file is used to initialize the DBMbdul e class and to
create a mapper object (as described in the previous example). Next, the t est () method of the Test
class is invoked to execute the example code.

public class Test {
DBI nt erface napper; // mapper used for this test

Test (String mapperFile) {
/1 create the napper to be used for this test
try {
DBMbdul e dbm = DBMbdul e.init (mapperFile);
mapper = dbm creat eDef aul t Mapper ("default");
Logger . debug (nmapper.toString());

catch (Exception e) {

Logger.error ("Error details: ", e);
System exit(0);

44 of 69

}

dbMapper User Guide

thi s. mapper = nmapper;

public static void main (String[] args) {

voi

try {
String mapperFile = args[0];
Test testSuite = new Test (mapperFile);
testSuite.test();

}
catch (Exception e) {

Logger.error ("Error details: ", e);
}

d test() throws Exception {
AttrVal Map aVal Map = nul | ;
HashMap hval Map = nul | ;

/1 Delete older entries
mapper.deleteAll (Primtive.class);

/'l Create a Primtive object and persist it to database
Primtive o1l = new Primtive(3, "test");
mapper.create (0l);
Logger. debug ("create(Object) :: Object " + ol
+ " is successfully created.");

/] Delete the ol Prinmtive object created above

mapper . del ete (01);

Logger. debug ("del ete(Object) :: Object " + ol
+ " is successfully deleted.");

/]l Create 0l again and then delete it using primy key
mapper.create (o0l);
mapper . del et eByPri maryKey (new Integer(3), Primtive.class);
Logger . debug ("del ete(pk,cls) :: Object " + ol

+ " is successfully deleted.");

/Il Create 0l again. Delete all the Prinmtive objects with x equal
/1 to 3 (deletes 0l from dat abase)
mapper.create (o0l);
aVal Map = new AttrVal Map();
aVal Map. put ("x", 3);
mapper . del et eByAttri butes (aval Map, Prinmtive.class);
Logger . debug ("del eteByAttributes(aval,cls) :: Object " + ol
+ " is successfully deleted.");

/!l Create 0l again. Update ol attributes and update new changes
/1 to database
mapper.create (0l);
Logger. debug ("create(Object) :: Object " + ol
+ " is successfully created.");
ol.setY ("New Val ue");
mapper . updat e(0l) ;
Logger. debug ("update(Object) :: Object " + ol
+ " is successfully updated.");

/'l Update selected ol attributes to database (using AttrVal Vap)
aVal Map = new AttrVal Map();
aVal Map. put ("y", "AttrVal update");
mapper . updat e(0l, aVal Map, true);
Logger . debug ("updat e(oj ect, aval ,bool) :: Cbject " + ol
+ " is successfully updated.");

/1 Update selected ol attributes to database (using HashMap)
hVal Map = new HashMap(1);
hval Map. put ("y", "HashMap update");
mapper . updat e(ol, hVal Map, true);
Logger . debug ("updat e(oj ect, hval,bool) :: Cbject " + ol
+ " is successfully updated.");

45 of 69

dbMapper User Guide

/Il Create few nore Primtive objects and persist themto database
Primtive 02 = new Primtive(6, null);

mapper.create (02);

Primtive 03 = new Primtive(36, "Wlcone !");

mapper.create (03);

Primtive o4 = new Primtive(36*6, "H ");

mapper.create (04);

/1 Locate an previously created Prinmitive object in database using
/1 primary key
Primitive retVal = (Prinmitive) napper.findByPrimaryKey (
new I nteger(36), Primtive.class); // should return o3
Logger . debug ("findByPrimaryKey(pk,class) :: Cbject " + retVal
+ " is successfully found.");

/1 Locate an previously created Primtive object in database by
/'l specifying key attribute x
aVal Map = new AttrVal Map();
aVal Map. put ("x", 36*6);
Col l ection cl1 = nmapper.findByAttributes (aVal Map, Primtive.class);
/1 c¢1 should contain only o4
Logger. debug ("findByAttributes(aval,class) :: Collection "
+ cl.toString() + " is successfully found.");

/1 Find all the Primtive object in database with null y (non-key
/] attribute)
aVal Map = new AttrVal Map();
aVal Map. put ("y", null);
Col l ection c2 = nmapper.findByAttributes (aVal Map, Primtive.class);
/1 c2 hould contain only 02
Logger . debug ("findByAttributes(aval,class) :: Collection "
+ c2.toString() + " is successfully found.");

/1l Find Primtive objects based on a custom SQL query
Col | ection c3 = mapper.findByQuery (
"SELECT * fromdeno_prinitive where col_x >= 36 order by col _x",
Primtive.class);
Logger . debug ("findByQuery(query,class) :: Collection "
+ c3.toString() + " is successfully found.");

/1 Find all the Prinmtive objects stored in deno_prinitive table
Col l ection c4 = mapper.findAll (Primtive.class);
Logger. debug ("findAll(class) :: Collection " + c4.toString()

+ " is successfully found.");

/1 Find a primary key object based on non-key attribute y.
/1 And then delete the correspondi ng object from database.
aVal Map = new AttrVal Map();
aVal Map. put ("y", "H");
Col | ection c5 = mapper.findPrinmaryKeysByAttributes (
aVal Map, Primtive.class);
/1 Above nethod should return 04. Renpve it
Logger . debug ("findPrimaryKeysByAttributes(aval,class) :: Collection "
+ c5.toString() + " is successfully found.");
Obj ect akey = cb5.iterator().next();
mapper . del et eByPri maryKey (akey, Primitive.class);

/1 Find primary key objects based on a custom SQ query
Col | ection c6 = mapper.findPrimaryKeysByQuery (
"SELECT col _x fromdeno_primtive where col _y IS NOT NULL",
Primtive.class);
Logger . debug ("findPri maryKeysByQuery(query,class) :: Collection "
+ c6.toString() + " is successfully found.");

/! Find primary key of all the Primtive objects stored in
/1 dermo_primtive table
Col l ection c7 = mapper.findAl | PrimaryKeys (Primtive.class);
Logger . debug ("findAl |l PrimaryKeys(class) :: Collection "

+ c7.toString() + " is successfully found.");

/1 Add "36*6" back.

46 of 69

dbMapper User Guide

mapper.create (04);
Col l ection c8 = mapper.findAll (Primtive.class);
Logger. debug ("findAll(class) :: Collection " + ¢8.toString()
+ " is successfully found.");
}
}

4.4.4 Example3 — User Class (User-defined Primary Key Class and Basic Types)

This example uses a class named User to illustrate the use of a user-defined primary key class and the
basic types supported by the dbMapper. The User class declares several basic fields, and instances of the
User class are mapped to the dend_user database table. The denmp_user table’s primary key is a
composite key of the fi r st Nane, | ast Name, and pi n columns.

public class User {
/1l Primary key attribute
String firstNane;
String | astNane;
I ong pin;

/1 other attributes
char sex;

doubl e hei ght;
String email;

bool ean alive;

I nteger incone;
Short dob;

/1 The no-argunent constructor, required by dbMapper
public User() { }
/1 Qther constructors

The User class attributes are mapped to the dend_user table columns as shown in the following SQL
statement:

create table denpo_user (
firstNane VARCHAR(64) NOT NULL,
| ast Name VARCHAR(64) NOT NULL,

pin I NTEGER NOT NULL,
sex VARCHAR(1),

hei ght FLOAT,

enai | VARCHAR(64) ,
alive CHAR(1),

i ncone | NTEGER,

dob SMALLI NT,

CONSTRAI NT denp_user _pk PRI MARY KEY (firstNane, |astName, pin)
)

The last line defines the composite primary key on the deno_user table. The primary key columns
should be defined as key fields of the mapping between the User class and the denp_user table. The
column SQL types are mapped to Java types as suggested by Oracle. If you are using a different RDBMS
product, please refer to the vendor documentation for Java-SQL type mapping details.

Let us look at the primary key class, User PK:

public class UserPK {
/1 Define all key attribute ouf User class
String firstNamne;
String | ast Nane;
long pin;

47 of 69

dbMapper User Guide

/1l The no-argunent constructor, required by dbMapper
public UserPK() { }
/1 Cther constructors

Note that User PK looks like a stripped version of the User class. The only fields that remain are those
that compose the primary key. For the user-defined primary key classes, the dbMapper package
recommends that the user override the equal s and hashCode methods of the j ava. | ang. Obj ect
super class.

The exanpl es/ ex03- pri mary_key_cl ass/ dat a/ or _mappi ng. xmi file defines the mapping
between the User class and the denb_user table:

<?xm version="1.0"?>
<! DOCTYPE nappi ngs PUBLI C " DBMapper OR Mappi ng"
"http://ww. onsd. nec. coni sof t war e/ db_or _mappi ng. dt d" >

<mappi ngs>
<!-- Bind User class to deno_user table. Define primary key class -->
<mappi ng class = "User"

t abl e="deno_user"
pk_class = "User PK"
>
<l-- bind java String firstNane/lastName to sqgl colum
firstNane/l ast Name (indicate as key attribute -->
<field id="firstNane" is_key="true" >
<basi c_type>St ri ng</ basi c_type>
</field>
<field id="last Nane" is_key="true" >
<basi c_type>Stri ng</ basi c_type>
</field>
<!-- bind java long pin to sgl colum pin:int (indicate as key
attribute -->
<field id="pin" is_key="true" >
<basi c_t ype>l ong</ basi c_t ype>
</field>

<!-- define non-key attributes -->
<field id="sex" is_key="false" >
<basi c_type> char </basic_type>
</field>
<field id="height" is_key="fal se" >
<basi c_type> doubl e </basi c_type>

</field>

<field id="emai|l" is_key="fal se" >
<basic_type> String </basic_type>

</field>

<field id="alive" is_key="fal se" >
<basi c_type> bool ean </ basi c_type>
</field>
<field id="income" is_key="fal se" >
<basi c_type> | nteger </basic_type>
</field>
<field id="dob" is_key="fal se" >
<basi c_type> Short </basic_type>
</field>
</ mappi ng>

</ mappi ngs>

We are all set. Let us go through the example code to see how User objects can be created, deleted,
modified, and located in the database and how to make use of the User PK primary key class.

48 of 69

dbMapper User Guide

public class Test {
DBl nt erface mapper; // mapper used for this test

Test (String mapperFile) {
/Il create mapper to be used for this test

public static void main (String[] args) {
try {
String mapperFile = args[0];
Test testSuite = new Test (mapperFile);
testSuite.test();

}
catch (Exception e) {

Logger.error ("Error details: ", e);
}
public void test() throws Exception {
AttrVal Map aVal Map = nul | ;
HashMap hval Map = nul | ;

/1 Delete older entries
mapper . del eteAll (User.cl ass);

/]l Create a User object and persist it to database
User usrl = new User ("Charles", "Smth", 13452,
"M, 170.34, "csnmith@milcity.conl,
true, new | nteger(55000), new Short((short)15));
mapper.create (usrl);
Logger . debug ("create(oject) :: Object " + usrl
+ " is successfully created.");

/'l Now del ete the user created above using prinmay key
User PK usr1PK = new User PK("Charles", "Smth", 13452);
mapper . del et eByPri maryKey (usr1PK, User.cl ass);
Logger. debug ("del ete(Onject) :: Object " + usrl

+ " is successfully deleted.");

/!l Create usrl again. Delete all the User objects with |ast name "Snmith"
/1 i.e. (deletes usrl from database)
mapper.create (usrl);
Logger. debug ("create(Qnject) :: Object " + usrl

+ " is successfully created.");
aVal Map = new AttrVal Map();
aVal Map. put ("l astName", "Smith");
mapper . del et eByAttri butes (aVal Map, User. cl ass);
Logger . debug ("del eteByAttributes(aval,cls) :: Object " + usrl

+ " is successfully deleted.");

/Il Create the usrl again. Update usrl attributes and update new changes

/1 to database

mapper.create (usrl);

Logger. debug ("create(Ooject) :: Object " + usrl
+ " is successfully created.");

usrl.setDob (new Short((short) 18));

usrl.setEmail (null);

usrl.setlnconme (null);

mapper . updat e(usr1);

Logger . debug ("update(Qoject) :: Object " + usrl
+ " is successfully updated.");

/'l Update selected attributes (using AttrVal Map)

/'l of usrl and update these new changes to database

aVal Map = new AttrVal Map();

aVal Map. put ("dob", new Short((short) 12));

aVal Map. put ("income", new |Integer(67759));

aVal Map. put ("enmmil", null);

mapper . updat e(usr 1, aVal Map, true);

Logger . debug ("updat e(noj ect, aval ,bool) :: Cbject " + usrl
+ " is successfully updated.");

49 of 69

dbMapper User Guide

/1 Update selected attributes (using HashMap) of usrl and update
/1 these new changes to database

hVal Map = new HashMap(1);

hVal Map. put ("incone", new | nteger(23234));

hval Map. put ("dob", new Short((short)30));

hval Map. put ("email", "smith@motnail.conl);

mapper . updat e(usr 1, hVval Map, true);

Logger . debug ("update(ject, hval,bool) :: Cbject " + usrl
+ " is successfully updated.");

/Il Create few nore users
User usr2 = new User ("Coldy", "Smith", 786, 'F, -1,
null, false, new I nteger(1000000),
new Short ((short)24));
mapper.create (usr2);
User usr3 = new User ("Kate", "Wnslet", 1234, 'F, 168. 23,
"kati e@ol | ywood. cont, true, new | nteger(999699),
new Short ((short)12));
mapper.create (usr3);
User usr4 = new User ("Princess", "D ana", 666, 'F, 178,
"di ana@el ebs. cont', false, new | nteger(666978),
new Short ((short)6));
mapper.create (usr4);

/'l Locate an previously created user in database using prinmary key
User PK usr2PK = new User PK (" Gol dy", "Smith", 786);
User usr2dup = (User) napper.findByPrimaryKey (
usr2PK, User.class); // Should return usr2
Logger . debug ("findByPrimaryKey(pk, class) :: Object " + usr2dup
+ " is successfully found.");

/1 Locate an previously created user in database using key attribues
aVal Map = new AttrVal Map();
aVal Map. put ("firstNane", "Princess");
aVal Map. put ("l ast Name", "Diana");
aVal Map. put ("pin", 666);
Col l ection cl = mapper.findByAttributes (aVal Map, User.cl ass);
/1 c¢1 should contain only usré4
Logger . debug ("findByAttributes(aval,class) :: Collection "
+ cl.toString() + " is successfully found.");

/1 Find all the alive fenales from database
aVal Map = new AttrVal Map();
aVal Map. put ("sex", 'F');
aVal Map. put ("alive", true);
Col | ection c2 = mapper.findPrinmaryKeysByAttributes (aVal Map,
User. cl ass);

Logger . debug ("findByAttributes(aval,class) :: Collection "

+ c2.toString() + " is successfully found.");
/'l Collection c2 should only contain primary object pointing to usr3.
/1 Use the primary key to delete this entry from database
Obj ect akey = c2.iterator().next();
mapper . del et eByPri maryKey (akey, User.cl ass);
Logger . debug ("del eteByPri maryKey(key, class) :: Object " + akey

+ " is successfully deleted.");

/1 Find User objects based on a custom SQ query
Col | ection ¢c3 = mapper.findByQuery (
"SELECT * from denp_user where |astName='Smith'",
User. cl ass);
Logger . debug ("findByQuery(query,class) :: Collection " + c3.toString()
+ " is successfully found.");

/1 Find all the User objects stored in deno_user table

Col l ection c4 = mapper.findAll (User.class);

Logger. debug ("findAll(class) :: Collection " + c4.toString()
+ " is successfully found.");

/! Find a prinmary key object based on non-key attribute sex.
/1 (find all nen from database)

50 of 69

dbMapper User Guide

aVal Map = new AttrVal Map();
aVal Map. put ("sex", 'M);
Col l ection c5 = mapper.findPrinmaryKeysByAttributes (
aVal Map, User. cl ass);
Logger . debug ("findPrimaryKeysByAttributes(aval,class) :: Collection "
+ c¢5.toString() + " is successfully found.");

/1 Find primary key objects based on a custom SQ. query
Col | ection c6 = mapper.findPrinmaryKeysByQuery (
"SELECT pin, |astNanme, firstNane FROM deno_user WHERE | ast Nane"
+ " like 'Sn®s ORDER by firstNane, |astNanme, pin",
User. cl ass);
Logger . debug ("findPri maryKeysByQuery(query,class) :: Collection "
+ c6.toString() + " is successfully found.");

/1l Find primary key of all the User objects stored in
/] deno_user table
Col l ection c7 = mapper.findAl | PrimaryKeys (User.cl ass);
Logger . debug ("findAll PrimaryKeys(class) :: Collection "
+ c7.toString() + " is successfully found.");

/1l Add usr3 ("Kate Wnslet") back.

mapper . create (usr3);

Col l ection c8 = mapper.findA | (User.class);

Logger. debug ("findAll(class) :: Collection " + c8.toString()
+ " is successfully found.");

}

4.4.5 Example4 — Transaction

This example demonstrates management of transaction boundaries across a set of DBl nt er f ace method
invocations. We are going to use the Pri mi ti ve class and the mapping defined in the “Example2 —
Basic Type” section.

The first part of the following code snippet creates a new transaction for the current thread (by invoking the
begi nTransact i on() method), performs some successful database operations, and finally terminates
the transaction by committing all the database changes that were made (using the

conmi t Transacti on() method).

The second part of the example code creates a new transaction for the current thread, then performs some
valid database operations followed by an error-prone operation (i.e. a database constraint violation). As a
result of the bad operation, an exception is thrown by the dbMapper package and the code rolls back all of
the database changes that had been made within the transaction.

void test() throws Exception {
AttrVal Map aVal Map = nul | ;
HashMap hVal Map nul | ;

Logger . debug ("cl eanup");
/Il Delete older entries
mapper.deleteAll (Primtive.class);

display ();

/]l Create few Primtive objects and persist themto database
Primtive ol new Primtive(1,null);

Primtive o2 new Primtive(2, "Hey");

Primtive 03 new Primtive(3, "Wlconme !");

mapper.create (0l);

mapper.create (02);

display ();

/1 Demonstrate successful transaction commt

/!l Create a new transaction for current thread
mapper . begi nTransacti on();

Logger. debug ("denonstrating transaction commit.");
try {

51 of 69

dbMapper User Guide

/'l Perfromsone valid database operations
mapper.create (03);

mapper . del ete (02);

03.setY ("New val ue");

mapper . update (03);

/1 Commit all database changes

mapper. conmi t Transaction();

}

catch (Exception exl) {
/1 Shoul d not happen, just in case (dunp the error nmsg and
/'l terminate the process)
Logger. debug ("failure: Unexpected exception : " + exl);
Systemexit(1);

Logger . debug ("sucess. the values after nodification.");
display ();

/'l Demonstrating unsuccessful transaction (rollback case)
/1 Create a new transaction for current thread
mapper . begi nTransacti on();
Logger . debug ("denonstrating transaction roll back.");
try {
/1 Perfrom sone valid database operations
mapper.create (02);
mapper . del ete (03);
/1 Bad operation. Trying to re-insert ol which will fail as
/1 it is a duplicate record (primary key viol ation)
mapper.create (0l);
/'l Code should never reach here, if it does, dunp the error
/'l msg and terminate the process
Logger . debug ("failure: Unexpected error.");
Systemexit(1);

}

catch (Exception exl) {
/1 Rol | back the database changes nade in this transaction
mapper . rol | backTransaction();

/1 Dunmp all the records and verify changes made i n above transaction
/1 are rolled back (e.g. 03 is not del eted)
Logger . debug ("sucess. the values after rollback.");

display ();
}
private void display () throws Exception {
Collection ¢ = mapper.findAll (Primtive.class);
Logger. debug ("Entries in database: " + c.toString());
}

4.4.6 Example5 — Nested Field

Now that you have seen how the dbMapper package can persist user objects that contain only basic fields
to a relation database, it is time to explore some of the more advanced OR mapping concepts defined by the
dbMapper package, such as nested fields. In this example, we will define two analogous classes, namely

Ri ngl and R ng2. Each of, these classes contain three nested Java attributes, namely
circle.radius,circle.center.xandcircle.center.y (please see the containment
relationship described in the class diagram below). These two classes are mapped to the deno_ri ng
table. We will present two alternatives to map these nested Java fields to the deno_r i ng table columns:

* Ringl class mapping: Map the nested attributes as basic fields by providing custom get and set
methods for the nested attributes.

* Ri ng2 class mapping: Map the nested attributes directly as nested fields (as described in the
“nested_type Element” section).

52 of 69

dbMapper User Guide

Ring1 Circle Ring2
(from nested) (from nested) (from nested)
[Mid : int [®iradius : int id : i
]) : id : int
[MEwidth : int EEcenter : Point E\Nidth sint
EEcircle : Circle) circle | @circle : Circle
_ circle | [Circle(radius : int, center : Point)— g

-getld() int _ @ [MgetRadius() : int 1 1| [Fgetld() : int
[#setld(id : int) : void 1 [#setRadius(radius : int) : void [Bsetld(id : int) : void
[#getwidth() : int [#®getCenter() : Point [Bgetwidth() : int
-setWith(widt_h »int) : void [#setCenter(center : Point) : void s etWidth(width : int) : void
.getRad!us() - int o 1 [#getCircle() : Circle
-setRadu.Js(radlus ¢ int) : void center [®setCircle(circle : Circle) : void
[BgetX() : int 1
[setX(x : int) : void Point
getY() : int _ (from nested)
setY(y : int) : wid B int

By :int

[HgetX() : int

[WsetX(x : int) : wid

[HgetY() : int

[®setY(y : int) : void

The SQL schema for deno_r i ng table:

create table deno_ring (
id | NTEGER PRI MARY KEY,
radi us | NTEGER,
wi dt h | NTEGER,
x | NTEGER,
y | NTEGER

Thecircle.radius,circle.center.xandcircle.center.y nested fields are mapped to the
radi us, x and y columns, respectively.

To demonstrate the first mapping alternative, let us look at the Ri ng1 class definition and it’s mapping to
the deno_r i ng table:

public class Ringl {
/1 Attribute declarations

/'l The no-argunent constructor, reqd by dbMapper
public R ngl() {
/] Created and initialize all nested fields
circle = new Circle(0, new Point(0,0));

/] Getter and setter methods
publlc int getX () {
return circle.getCenter().getX();

public void setX (int x) {
circle.getCenter().setX (x);

}
}
<mappi ng class = "Ringl" tabl e="deno_ring" >
<field id="x">
<basi c_t ype>i nt </ basi c_t ype>
</field>
</ mappi ng> o

53 of 69

dbMapper User Guide

This class definition and class mapping demonstrate how a nested attribute, in this case the

circl e. center. x attribute, may be mapped as a basic field. This is accomplished by supplying the
custom set and get methods, get X() and set X(), which access the nested attribute directly (i.e. without
referencing any intermediate object).

The second alternative provides a cleaner method for mapping nested attributes to database columns. This
method does not require the mapped class to define the custom set and get methods, e.g. get X() and

set X() . Before going through this example, please be sure to read the example covered in the "nested
type Element" section.

The following code snippet shows how the ci r cl e. cent er . X nested Java field of the Ri g2 class is
mapped as a nested field to the column X:

<mappi ng class = "Ring2" tabl e="deno_ring" >
<field id="x">
<nest ed_type col um="x">
<i nternedi at e_node node_id="circle" class="Circle" />
<i ntermedi at e_node node_i d="point" class="Point">
<get _net hod> get Center </get_met hod>
</ i ntermedi at e_node>
<l eaf _node node_i d="x" class="int" />
</ nested_type>
</field>

</ mappi ng>

The nested x field of a Ri Ng2 object, say ri ng2, is accessed as follows:
ring2.getCircle().getCenter().getX()

To modify this nested attribute, dbMapper will use:
ring2.getCrcle().getCenter().setX(new nt eger Val ue)

If any of the intermediate get methods return a nul | object, the dbMapper acts as if the leaf field, X, was
nul | .

Notice that the default Ri ng2 constructor (i.e. the constructor that takes no arguements) creates all of the
intermediate objects in the Ri ng2 object containement tree:

public class Ring2 {

/1 The default constructor, reqd by dbMapper
public R ng2() {
/1 Created and initialize all nested fields
circle = new Circle(0, new Point(0,0));

}

Now it is time to create and persist some Ri ngl and Ri ng2 objects to the database. The following code is
taken from the Test . j ava file:

/1 Test Ringl (nested attributes napped to basic types)
void testRingl () throws Exception {

/1l Delete older entries

mapper . del eteAll (Ringl.class);

/'l Create new entries

Ringl r1 = new Ringl (1, 3, new Gircle(9, new Point(1,2)));
Ringl r2 = new Ringl (2, 4, new Circle(16, new Point(2,3)));
mapper.create (rl);

54 of 69

dbMapper User Guide

mapper.create (r2);
Logger . debug ("create(oject) :: Object " +rl + " and " + r2
+ " is successfully created.");

/'l Update sone nested attributes

AttrVal Map aMapl = new AttrVal Map();

aMapl. put ("x", 5);

aMapl. put ("radius", 11);

mapper . update (rl1, aMapl, true);

Logger . debug ("updat e(obj ect, aMap, bol | ean) on object " + rl
+ " is successfully excuted.");

/1l Find objects by giving nested attributes
AttrVal Map aMap2 = new AttrVal Map();
aMap2. put ("y", 3)
Col l ection cl = mapper.findByAttributes (aMap2, Ringl.class);
Logger . debug ("findByAttributes(aval,class) :: Collection "
+ cl.toString() + " is successfully found.");

/'l Test Ring2 (nested attributes nmapped to nested types)
void testRing2 () throws Exception {

/1 Delete older entries

mapper . del eteAll (Ring2.class);

/'l Create new entries

Ring2 r1 = new Ring2 (1, 2, new Circle(32, new Point(0,0)));

Ring2 r2 = new Ring2 (2, 2, new G rcle(25, new Point(1,1)))

mapper.create (rl);

mapper.create (r2);

Logger. debug ("create(Ooject) :: Object " +rl + " and " + r2
+ " is successfully created.");

/!l Create a ring which has null circle (internediate nested attributes
/1 are null)
Ring2 r3 = new Ring2 (3, 3, null);
mapper. create(r3);
Logger. debug ("create(Object) :: Object " +r3
+ " is successfully created.");

/'l Update sone nested attributes

AttrVal Map aMapl = new AttrVal Map();

aMapl. put ("x", 3);

aMapl. put ("radius", 21);

mapper. update (rl1, aMapl, true);

Logger . debug ("updat e(object, aMap, bol | ean) on object " + rl
+ " is successfully excuted.");

/1l Find objects by giving nested attributes
AttrVal Map aMap2 = new AttrVal Map();
aMap2. put ("y", 1);
Col l ection cl1 = mapper.findByAttributes (aMap2, Ring2.class);
Logger . debug ("findByAttributes(aval,class) :: Collection "
+ cl.toString() + " is successfully found.");

/1 Load ring with no circle.
Ri ng2 r3dup = (Ring2) mapper.findByPrimaryKey (new Integer(3),
Ri ng2. cl ass);
Logger . debug ("findByPri maryKey(key, class) :: found object " + r3dup);
}

4.4.7 Example6 — Person Class (Complex and Complex Collection Fields)
All of the examples discussed so far use classes that are simple in the sense that each of their fields can be

mapped to a single database column. This example demonstrates the use of more complicated classes, such
as those that contain instances of other user-defined classes, or collections of objects.

55 of 69

dbMapper User Guide

Note that the dbMapper supports both one-to-one and one-to-many relationships between a user object and
its fields. Please refer to the “Field Types” section for a more detailed discussion of the complex and
complex collection fields.

The containment relationship used in this example is as follows:

Address
Mlevee E8addrid : int
WowneMame - Stin BEownerName : String Geoloc
BBhouseld int 91) Ehouseld : int <<single>> |@Baddrid : int
Do @——<<single>>__@fstrectAddr : String @———— Bx : float
@8area : float address i 3
<<aray>> Biintage : int 1| @ity : String 1 Jocation 1|EEy : float
residences.— ’ [8state : String
1 B8zip : int
Person *
@8nhame : String
NI<<collection>> _
vehicles Vehicle Part
* | BBownerName : String |1 <<collection>> | BN : int
BEvin : int «@——— [Bfpartld : String
E8make : String parts EEdescr : String

A per son object owns several houses (many-to-one array relation) and vehi ¢l es (many-to-one
collection relation). Each house has one addr ess (one-to-one relation) whose geographic location is
specified by a GeoLoc object (one-to-one relation). A vehi cl e object may contain several part s
(many-to-one collection relation).

Let us look at the class definitions:

public class Person {
/Il Primary key attribute
String nane;
/1l many-to-one array relationship with residences attribute
House[] residences;
/'l many-to-one collection relationship with vehicles attribute
Vector vehicles; // Vector of Vehicle

/'l The no-argunent constructor, reqd by dbMapper
public Person() { }
/1 Cther constructors

/] Getter/Setter methods for the fields

public String getNanme () { return nane; }

public House[] getHouses () { return residences; }
public Vector getVehicles () { return vehicles; }

public void setNane (String nane) { this.nane = nane; }

public void setHouses (House[] residences) { this.residences = residences; }
public void setVehicles (Vector vehicles) { this.vehicles = vehicles; }

/1 Other methods

Cc
Cc

public class House {
/1l Primary key attributes
String owner Nang;
int housel d;
/'l one-to-one relationship with address attribute
Addr ess address;
/1 other (basic) attributes
fl oat area;
int Vi nt age;

56 of 69

dbMapper User Guide

public class Address {
/Il Primary key attribute
int addr | d;
/'l Parent class relation attributes
String owner Nane;
int housel d;
/1 one-to-one relationship with location attribute
GeolLoc | ocation;
/'l other (basic) attributes
String streetAddr;

String city;
String state;
int zip;

public class GeolLoc {
/1l Primary key attribute

int addr 1 d;

/1 other (basic) attributes
f1 oat X;

fl oat y;

public class Vehicle {
/Il Primary key attribute
int vin;
/1 many-to-one collection relationship with parts attribute
ArraylList parts = new ArraylList(1);
/1 Parent class relation attributes
String owner Nang;
/1 other (basic) attributes
String rmake;

public class Part {
/1l Primary key attribute
String partld;
/'l Parent class relation attributes
int vin;
/'l other (basic) attributes
String descr;

The basic fields of the Per son class are mapped to the deno_per son table columns as follows:

create table denp_person (
name VARCHAR(64) PRI MARY KEY
)

The deno_per son_house table is used to store the r esi dences attribute of a Per son object. Note
the foreign key relationship between the denmo_per son. name and

deno_per son_house. owner Nane columns. Multiple deno_per son_house records may be
linked to a single deno_per son record using this foreign key relationship; and upon deletion of the
deno_per son record, all these denmp_per son_house records are automatically deleted. The

owner Nane column is also part of the composite primary key defined on the deno_per son_house
table.

create tabl e denpo_person_house (
owner Name VARCHAR(64) NOT NULL,
housel d | NTEGER NOT NULL,

57 of 69

dbMapper User Guide

area FLOAT,
vi ntage | NTEGER,
CONSTRAI NT constr_deno_ph_pk PRI MARY KEY(owner Nane, housel d),
CONSTRAI NT constr_deno_ph_fr_nane FORElI GN KEY(owner Nane)
REFERENCES denp_per son(nane) ON DELETE CASCADE
)

The house addr ess is saved in the deno_per son_addr ess table. This table has a single primary
key column named addr | d. The housel d and owner Nane columns capture the one-to-one relationship
between a deno_per son_house and deno_per son_addr ess database record.

create tabl e denp_person_address (

addr | d | NTEGER PRI MARY KEY,

owner Name VARCHAR(64),

housel d | NTEGER,

street VARCHAR(128),

city VARCHAR(64),

state VARCHAR(32),

zi p | NTEGER,

CONSTRAI NT constr_denp_pa_fr_house FORElI GN KEY (owner Name, housel d)

REFERENCES denp_per son_house(owner Name, housel d) ON DELETE CASCADE

)

The denp_per son_address_| ocati on,deno_person_vehi cl e and

deno_person_vehi cl e_part tabl es are mapped to the GeoLoc, Vehi cl e, and Part classes
respectively. The table schema (constraints, key relations, primary key etc.) follows the same conventions
as described above:

create tabl e denp_person_address_| ocation (
addrld | NTEGER NOT NULL,
X FLOAT,
y FLOAT,
CONSTRAI NT constr_deno_pal _fr_id FOREI GN KEY (addrld)
REFERENCES denp_per son_addr ess(addrld) ON DELETE CASCADE
)

create tabl e deno_person_vehicle (
vin | NTEGER PRI MARY KEY,
owner Name VARCHAR(64) NOT NULL,
make VARCHAR(128),
CONSTRAI NT constr_deno_pv_fr_name FORElI GN KEY(owner Nane)
REFERENCES denp_per son(nane) ON DELETE CASCADE
)

create tabl e deno_person_vehicle_part (
partld VARCHAR(64) PRI MARY KEY,
vin I NTEGER NOT NULL,
descr VARCHAR(128),
CONSTRAI NT constr_denmo_pvp_fr_vin FOREI GN KEY(vin)
REFERENCES deno_per son_vehicl e(vin) ON DELETE CASCADE
)

The following is the mapping file used to associate the Per son, House, Addr ess, GeoLoc, Vehi cl e
and Par t classes to the corresponding database tables, which were described above:

<?xm version="1.0"?>
<! DOCTYPE nappi ngs PUBLI C " DBMapper OR Mappi ng"
"http://ww. onsd. nec. coni sof t war e/ db_or _mappi ng. dt d" >

<mappi ngs>

<mappi ng class = "Person" tabl e="deno_person" >
<l-- inplicit primary key class "String" -->
<field id="name" is_key="true" >
<basi c_type>Stri ng</ basi c_type>
</field>

58 of 69

dbMapper User Guide

<field id="resi dences" is_key="false" >
<get _net hod> get Houses </ get_net hod>
<set _nethod> set Houses </set_net hod>
<conpl ex_col | ecti on_type>
<el enent _mapref class="House"/>
<!-- nore than one house stored in an array. -->
<cont ai ner _cl ass> House[] </container_class>
<key_bi ndi ngs>
<key_bi ndi ng parent _fiel d="name" child_fiel d="owner Nanme"/>
</ key_bi ndi ngs>
</ conpl ex_col | ection_type>
</field>
<field id="vehicles" is_key="fal se" >
<conpl ex_col | ecti on_type>
<el enent _mapref class="Vehicle"/>
<!-- nore than one vehicle stored in a vector(collection). -->
<cont ai ner _cl ass>j ava. util . Vector</cont ai ner _cl ass>
<key_bi ndi ngs>
<key_bi ndi ng parent _fiel d="nanme" child_fiel d="owner Name"/>
</ key_bi ndi ngs>
</ conpl ex_col | ection_type>
</field>
</ mappi ng>

<mappi ng class = "House" tabl e="deno_person_house" >
<!-- pk_class nane="String,int" -->
<field i d="owner Nane" is_key="true" >
<basi c_type>Stri ng</ basi c_type>
</field>
<field id="housel d" is_key="true" >
<basi c_type>i nt </ basi c_t ype>
</field>
<field id="area" is_key="false" >
<basi c_t ype>f | oat </ basi c_t ype>
</field>
<field id="vintage" is_key="false" >
<basi c_type>i nt </ basi c_t ype>
</field>
<field i d="address" is_key="fal se" >
<conpl ex_t ype>
<el enent _mapref cl ass="Address"/>
<key_bi ndi ngs>
<key_bi ndi ng parent _fi el d="owner Name" child_fi el d="owner Nanme"/>
<key_bi ndi ng parent _fiel d="houseld" child_fiel d="houseld"/>
</ key_bi ndi ngs>
</ conpl ex_t ype>
</field>
</ mappi ng>

<mappi ng cl ass = "Address"
t abl e="deno_per son_addr ess" >
<!-- pk_class name="int" -->

<field id="addrld" is_key="true" >
<basi c_t ype>i nt </ basi c_t ype>
</field>
<field i d="owner Name" >
<basi c_type>String</basi c_type>
</field>
<field i d="houseld" >
<basi c_type>i nt </ basi c_t ype>
</field>
<field id="street Addr" is_key="fal se" >
<basi c_type colum="street">String</basi c_type>
</field>
<field id="city" is_key="false" >
<basi c_type>String</basi c_type>
</field>
<field id="state" is_key="fal se" >
<basi c_type>Stri ng</ basi c_type>
</field>
<field id="zip" is_key="fal se" >

59 of 69

dbMapper User Guide

<basi c_t ype>i nt </ basi c_t ype>
</field>
<field id="location" is_key="fal se" >
<conpl ex_t ype>
<el enent _mapref cl ass="CeolLoc"/>
<key_bi ndi ngs>

<key_bi nding parent _field="addrld" child_field="addrld"/>

</ key_bi ndi ngs>
</ conpl ex_t ype>
</field>
</ mappi ng>

<mappi ng cl ass = "GeoLoc"
t abl e="deno_per son_addr ess_| ocati on" >
<!-- no pk_class -->
<field id="addrld" is_key="fal se" >
<basi c_t ype>i nt </ basi c_t ype>
</field>
<field id="x" is_key="fal se" >
<basi c_t ype>fl oat </ basi c_type>
</field>
<field id="y" is_key="fal se" >
<basi c_type>fl oat </ basi c_type>
</field>
</ mappi ng>

<mappi ng class = "Vehicle"
t abl e="deno_person_vehicl e" >
<!-- pk_class nane="int" -->

<field id="vin" is_key="true" >
<basi c_type>i nt </ basi c_t ype>

</field>
<field id="owner Nane" >

<basi c_type>St ri ng</ basi c_type>
</field>
<field id="make" is_key="false" >

<basi c_type>String</basi c_type>
</field>
<field id="parts" is_key="fal se" >

<conpl ex_col | ecti on_type>
<el enent _mapref class="Part"/>

<!-- nore than one part stored in a list(collection)
<cont ai ner _cl ass>java. util . ArrayLi st </ contai ner_cl ass>

<key_bi ndi ngs>

<key_bi nding parent _field="vin" child_field="vin"/>

</ key_bi ndi ngs>
</ conpl ex_col | ection_type>

</field>

</ mappi ng>

<mappi ng class = "Part”
t abl e="deno_person_vehi cl e_part" >
<l-- int pk_class -->

<field id="partld" is_key="true" >

<basi c_type>St ri ng</ basi c_type>
</field>
<field id="vin" is_key="fal se" >

<basi c_t ype>i nt </ basi c_t ype>

</field>
<field id="descr" is_key="fal se" >

<basi c_type>Stri ng</ basi c_type>
</field>

</ mappi ng>

</ mappi ngs>

Note that the Per son OR mapping overrides the default get/set method names for the r esi dences
field. Please refer to the "field Element" section for details. Now we are ready to use the above mapping to

create a Per son object (with complex and complex collection fields) in the database.

60 of 69

dbMapper User Guide

cl ass Test Person {
/] create mapper object

public void test() throws Exception {
/1 Delete older entries
mapper . del et eAl | (Person.cl ass);

/'l Instantiate all House objects owned by "Charles Snmith"
Address r1l = new Address (1, "Charles Snith", 101, "12056 G eyw ng Sq",
"Reston", "VA', 20191,
new GeoLoc(1l, (float)34.5, (float)-23.6));
new House ("Charles Smth", 101, 1024, 5, r1l);
new Address (2, "Charles Smth", 102, "13452 Farnctrest C",
"Herndon", "VA', 20171,
new GeoLoc(1l, (float)34.45, (float)-23.61));
House h2 = new House ("Charles Smth", 102, 1025, 1000000, r2);

House hl
Address r2

/'l Instantiate all the vehicles owned by "Charles Smith"
Vehicle vl = new Vehicle ("Charles Smth", 234567, "Toyota Camary", null);
ArraylList partsl = new Arraylist();
partsl. add (new Part (874687, "steering",

"steer the vehicle in desired direction."));
partsl.add (new Part (874687, "tyres", null));
Vehicle v2 = new Vehicle ("Charles Smth", 874687, "Ford", partsl);

/Il Instantiate the "Charles Smth" Person object wth above
/1 houses and vehicles

House[] housesl = new House[] {h1l, h2};

Vector vehiclesl = new Vector(2);

vehi cl esl. add (v1);

vehi cl esl. add (v2);

Person pl = new Person("Charles Smth", housesl, vehiclesl);

/'l Persist the entire Person object containment tree (including
/'l vehicles, houses, address, l|locations, parts) in database
mapper. createTree (pl);
Logger. debug ("create(Object) :: Object " + pl
+ " is successfully created.");
Logger.debug (M-------mmm s e e ");

/1 Find the persistent "Charles Snith" Person object in database
/1 Load the entire Person object containnent tree from database
/1 in another Person object
Person plDup = (Person) mapper.findByPrimaryKey ("Charles Snmith",
Person. cl ass, 9999);
/'l Conpare pl and plDup object containnment tree in the log file,
/1 field by field. The fields should have sane val ue.
Logger . debug ("findByPrimaryKey() :: Cbject " + plDup
+ " is successfully executed.");

}

Refer to the “Using a DBInterface” section for more examples of database operations on an object with
complex and complex collection fields.

4.4.8 Example7 - Key Binding Field Types

As part of demonstrating how the dbMapper handles complex and complex collection fields, the example
in the previous section demonstrated the use of key bindings. Recall that the key bindings are used by the
dbMapper to correlate complex and complex collection fields to their containing objects. In the example in
the previous section, the Java types and SQL types of the parent and child fields of the key bindings were
the same. Although such consistency between the parent and child fileds of the key binding is
recommended, it is not necessary. This section provides an example that shows that the parent and child
fields of the key binding need not necessarily be of the same Java and SQL types.

61 of 69

dbMapper User Guide

Before presenting the example, we first state the only restriction that applies to the types of the child and
parent fields of a key binding: either the Java type of the child field can be promoted by the Java compiler
to the type of the parent field, or vice versa. Note that there are no restrictions or dependencies between the
SQL types of the child and parent fields of the key binding. (Of course, the SQL type used to store any
field must be consistent with the Java type of the field.)

In this example, an Account class contains a complex field named bal ance, of type Bal ance. The
key binding used by this example associates the account Nunber field of the Bal ance class with the

i d field of the Account class. Note that the Java type of the account Nunber field is | ong and its
SQL type is | NTEGER, while the Java type of the i d field of the Account class is | nt eger and its SQL
type is SMALLI NT.

Account Balance
(from difftype) (from difftype)
E8d : Integer EfaccountNumber : long
Efbalance : Balance balance Efbalance : float
Moetld() : Integer 1 1 | MigetAccountNumber() : long
Msetld(d : Integer) : woid s etAccountNumber(accountNumber : long) : void
#yetBalance() : Balance #getBalance() : float
#setBalance(balance : Balance) #setBalance(balance : float)

The Account class uses the denp_account table (for storage of the basic fields), and the Bal ance
class uses the demo_balance t abl e.

create tabl e denp_account (
id SMALLI NT PRI MARY KEY

create tabl e denp_bal ance (
account Nurrber | NTEGER NOT NULL,
bal ance FLOAT,
CONSTRAI NT constr_deno_ch_fr_account num FORElI GN KEY(account Nunber)
REFERENCES denp_account (i d) ON DELETE CASCADE

)
The class mappings for the Account and Bal ance class follow:

<mappi ng class = "Account" tabl e="deno_account" >
<l-- inplicit primary key class "Integer" -->
<field id="id" is_key="true" >
<basi c_type col um="id">| nt eger </ basi c_type>
</field>
<field id="bal ance" is_key="fal se" >
<conpl ex_t ype>
<el enent _mapref cl ass="Bal ance"/>
<key_bi ndi ngs>
<key_bi ndi ng parent _field="id" child_fiel d="account Nunber"/>
</ key_bi ndi ngs>
</ conpl ex_t ype>
</field>
</ mappi ng>

<mappi ng cl ass = "Bal ance" t abl e="deno_bal ance" >
<field id="account Nunber" is_key="true">
<basi c_t ype>l ong</ basi c_t ype>
</field>
<field id="bal ance" >
<basi c_t ype>f | oat </ basi c_t ype>
</field>
</ mappi ng>

The following code fragment simply creates and persists a new Account object containment tree to the
database. Later it reads the entire Account object containment tree from the database to memory.

62 of 69

dbMapper User Guide

void test() throws Exception {
/1 Delete older entries
mapper . del eteAl | (Account.cl ass);

Account pl = new Account (new |Integer(1l), new Balance(1l, (float) 430.35));
mapper . createTree (pl);

Account plDup = (Account) napper.findByPrimaryKey (new | nteger(1),
Account . cl ass, 3);

449 EJB Example
The examples discussed in this section introduce another powerful feature of the dbMapper: how to write
bean managed persistent (BMP) for an entity bean using dbMapper.

4.49.1 Compiling and Running This Example

Since an EJB example, which is located in the “ex08-ejb” directory, is substantially more involved than the
other examples, the procedures to compile and run it are somewhat different from the other examples. You
will need to have “Ant” installed on your system to compile this example. Also, note that this example was
written for the Orion application server. To compile the example with other application servers, you may
need to modify the “env.bat” and “build.xml” files accordingly. (It is a good idea to backup the original
files before modifying them with your changes.)

Before compiling and running the example, you will first need to modify the “env.bat” file to match your
setup, and then execute it toget the desired environment.

The “build.xml” file contains the instructions to compile the example. First edit that file and modify any
settings as needed to match your setup. Once the file is modified, run “ant” to compile the example.

Before running the example, make sure that your database and application server are up and running. Then
execute the “run.bat” script to run the example.

4.4.9.2 Counter Entity Bean
Our EJB example will be a simple counter bean. The counter bean represents a dynamic counter value.
Through persistence, the counter value is stored in an underlying relational database.

Let’s look at the counter bean remote interface, which exposes methods for incrementing and decrementing
the counter value:

import java.rm .RenpteException;
i mport javax.ejb. EJBObj ect;

public interface Counter extends EJBObject {
/1 Increnent the counter by 1
public int increment() throws RenoteException;
/1 Decrenent the counter by 1
public int decrenent() throws RenoteException;
/1 Get the current counter val ue
public int value() throws RenoteException;

}

The home interface for Count er is specified by Count er Home. j ava, shown below. The
Count er Homre class defines a single factory method, cr eat e() , to create Count er EJB objects:

/1 inmport statenents

public interface CounterHonme extends EJBHome {
/'l creates a Counter EJB object with given (unique) counter identifier.

63 of 69

dbMapper User Guide

public Counter create(String counterld) throws CreateException, RenoteException;
/1 Find a counter by its primary key (counter id).
public Counter findByPrinmaryKey(String primaryKey)
throws Fi nder Excepti on, RenpteException;
/!l Returns all the Counter entity beans stored in database
public Enuneration findAll () throws FinderExcepti on, RenoteException;
/1 Returns all the Counter beans that have a non-zero val ue
publ i c Enuneration findNonZeroCounters() throws FinderException, RenoteException;

}

The cr eat e() method creates a new database record representing a counter. The Count er Horre
interface defines three finder methods. The f i ndByPr i mar yKey method searches the database for a
counter that already exists. The f i NdAI | method returns all counters stored in the database. The

fi ndNonZer oCount er s method searches the database for counters that have a non-zero counter value.

The Counter entity bean’s primary key (counter i d) is a simple St ri ng object. The client code that
constructs the counter i d should make sure that it’s unique.

Before going through the entity bean implementation class, Count er EJB, let’s look at the helper class,
Count er Bean, and the denp_count er database table. The denp_count er database table consists
of two columns: i d and val ue. Thei d column is the primary key for this table..

create table denp_counter (
id VARCHAR(64) PRI MARY KEY,
val ue | NTEGER

)

Count er Bean is a simple Java class that encapsulates all the necessary information for a counter. The
Count er Bean class is composed of two fields, count er | d and val ue:

public class CounterBean {
private String counterld; // Holds counter bean’s primary key (counter id)
private int value = 0; /1 Holds current counter value (initialized with 0)

public CounterBean () {
}

/] Getter & setter nethods for counterld & value fields

public int increment() {
return ++val ue;
}

public int decrement() {
return --val ue;
}

}

The class mapping (between the Count er Bean class and denmp_count er table) is specified by the
following OR mapping file (with path dat a/ or _mappi ng. xm):

<?xm version="1.0"?>

<! DOCTYPE mappi ngs PUBLI C " DBMapper OR Mappi ng"

"http://ww. onsd. nec. coni sof t war e/ db_or _mappi ng. dt d" >

<mappi ngs>

<mappi ng cl ass = "Count er Bean"
t abl e="deno_counter" >
<l-- inplicit primary key class "String" -->

<field id="counterld" is_key="true" >
<basi c_type colum="id">String</basic_type>
</field>
<field id="val ue" is_key="fal se" >
<basi c_type>i nt </ basi c_t ype>
</field>
</ mappi ng>

64 of 69

dbMapper User Guide

</ mappi ngs>

The above mapping is very similar to the other mappings discussed in earlier examples. The primary key
field, count er | d, is mapped to the i d column of the denp_count er table. The counter val ue field
is mapped to the val ue column. Since the above mapping contains only one key field, count er | d, the
St ri ng class will be used as the primary key class for the mapping.

This example assumes that the application server where the counter entity bean is deployed is configured
with a JNDI data source that can be accessed within EJB implementation code through the JNDI context.
The JNDI data source is used by the dbMapper to save and load counter beans to and from a database. The
dbmapper . xm file located in the dat a directory is used to initialize the DBMapper object. Note,
absolute paths are used for both the dbmapper . xm and or _nmappi ng. xm files, as they are loaded
from the ejb jar file (see section “DBModule Class™). The content of the dbmapper . xm file follows:

<?xm version="1.0"?>
<! DOCTYPE root PUBLI C "DBMapper Config" "http://ww. onsd. nec. com sof t war e/ dbnmapper. dtd" >

<r oot >

<dat a_sources>
<dat a_source id="defaul t _ds">
<j ndi _data_source jndi _|l ocati on="j dbc/ O acl eCoreDS" />
</ dat a_source>
</ dat a_sour ces>

<mappi ng_cont ext s>
<mappi ng_cont ext id="default" data_source_id="default_ds">
<or _mappi ng_files>
<or _mappi ng_file path="/or_mappi ng. xm "/ >
</ or _mappi ng_fil es>
</ mappi ng_cont ext >
</ mappi ng_cont ext s>

</root>

The above configuration defines a INDI data source named def aul t _ds that makes use of the
javax.sql.DataSource that is bound to the " j dbc/ Or acl eCor eDS" JNDI path at the application server.
The “default” mapping context is created by binding the def aul t _ds data source and the mappings
(already discussed) defined in or _mappi ng. xm file.

Our entity bean implementation is specified by the CounterEJB.java class, shown below:

inmport java.io.Serializable;

i mport com nec. tdd.tool s. dbMapper. *;
inmport java.util.x*;

import javax.ejb.*;

public class CounterEJB inplenents EntityBean {

The above snippet declares the Count er EJB class that represents a counter bean. Notice that the
Count er EJB class extends the Ent i t yBean interface, which all entity bean implementations must do.
The following code snippet declares two variables, namely count er and mapper. The count er field
is the only persistent field of our entity bean class. The Count er EJB class will load and store the
database data in the count er field using the mapper named nmapper .

/1 Bean-nanaged state field

private CounterBean counter = new CounterBean();

/'l The database interface used to | oad/store counter fromto database.
private DBInterface mapper = null;

65 of 69

dbMapper User Guide

The following code declares the Cct X attribute and related methods (required by the EJB specification).
The ct x attribute stores the entity bean context and can later be used to acquire the environment
information.

private EntityContext ctx;
public void setEntityContext(EntityContext ctx) {
this.ctx = ctx;

}

public void unsetEntityContext() {
this.ctx = null;
}

The EJB container invokes the ej bLoad method to load database data into the bean instance. The

ej bLoad method acquires the primary key via the get Pri mar yKey () call to the entity bean context.
This is done to determine what data should be loaded into the count er field. Next, thei ni t DBI f ()
method (explained later in this section) is invoked to initialize the mapper, mapper . Subsequently, the
fi ndByPri mar yKey() method call on mapper updates the in-memory entity bean object to reflect the
current counter value stored in the database.

/**
* Loads the EJB fromthe persistent storage.
*/
public void ejbLoad() {
String id = (String) ctx.getPrimaryKey();
Systemout.println ("ejbLoad (" +id + ")");
try {
initoBlf();
Count er Bean newCounter =
(Count er Bean) mapper . findByPrimaryKey (id, CounterBean.cl ass);
if (null == counter) {
t hrow new NoSuchEntityException ("ejbLoad: No counter with id="
+id);
}
counter = newCounter;
} catch (Exception ex) {
t hrow new EJBException(ex);

}

The EJB container calls the] bSt or e method to update the database to the current values of this entity
bean instance.

/**
* Stores the EJB in the persistent storage.
*/
public void ejbStore() {
String id = (String) ctx.getPrimaryKey();
Systemout.println ("ejbStore (" +id + ")");
try {
initDBlIf();
mapper . updat e(counter) ;
} catch (Exception ex) {
t hrow new EJBExcepti on(ex);
}
}

The EJB container invokes the following EJB-create method when a client calls the creat e(Stri ng
count er | d) method on a Count er Hore object. The ej bCr eat e method attempts to add a new
counter into the database with the given counter identifier.

public String ejbCreate (String counterld) throws CreateException {
Systemout.println ("ejbCreate (" + counterld + ")");
count er. set Counterld(counterld);
count er. set Val ue(0);

66 of 69

dbMapper User Guide

try {
initbBlf();
mapper . create(counter);
} catch (Exception ex) {
throw new Creat eException (ex.get Message());

}

return counterld;

}
The ej bRenpve method is invoked to destroy a counter and remove it from the database.

/**
* Del etes the EJBBean fromthe persistent storage.
*/
public void ej bRenove() {
String id = (String) ctx.getPrimryKey();
Systemout.println ("ejbRemove (" +id + ")");
bool ean isDel eted = true;
try {
initDBIf();
i sDel et ed = napper. del eteByPri naryKey (id, CounterBean. cl ass);
} catch (Exception ex) {
t hrow new EJBExcepti on(ex);

}
if (! isDeleted) {

t hrow new NoSuchEntityException ("No counter with id " + id);
}

}

The following code implements all the finder methods declared in the Count er Honme home interface.
Notice that the EJB-finder methods have the same signature as thef i Nd XXX methods in the home
interface. These finder methods are used to find existing counter beans in the database. They return either
the primary key (St r i ng class for the counter bean) for the entity bean it finds or an enumeration of
primary keys if more than one are found.

/**
* Attenpts to find the EJBBean with a given Prinmary Key from
* the persistent storage.
*/
public String ej bFindByPri maryKey (String pk)
throws Obj ect Not FoundExcepti on {
Systemout.println ("ejbFindByPri mryKey (" + pk + ")");
Count er Bean bean = nul | ;
try {
initDBIf();
bean = (CounterBean) mapper.findByPri maryKey (pk, CounterBean. cl ass);
} catch (Exception ex) {
t hrow new EJBException (ex);

}

if (bean !'= null) {
Systemout.println ("ejbFindByPri maryKey found counter[" + pk + "]");
counter = bean;

} else {
t hrow new NoSuchEntityException ("No counter with id " + pk);

return pk;

}

public Enuneration ej bFindAll () {

Systemout.printin ("ejbFindAI");

try {
initDBIf();
Col l ection ¢ = mapper.findAl | PrimaryKeys (CounterBean. cl ass);
Systemout.println ("The Collection is " + c);
return Col |l ections. enuneration (c);

} catch (Exception ex) {
t hrow new EJBException (ex);

67 of 69

dbMapper User Guide

}
}

publ i c Enuneration ej bFi ndNonZeroCounters() {
Systemout. println ("ejbFi ndNonZer oCount ers");
try {
initbBlIf();
Col l ection ¢ = mapper. findPrimaryKeysByQuery (
"select id fromdeno_counter where val ue<>0", CounterBean. cl ass);
return Col |l ections. enuneration (c);
} catch (Exception ex) {
t hrow new EJBException (ex);
}

}

Implementation of remote interface methods (see Count er . j ava);

The other EJB-required methods that the EJB container will call to manage the counter entity bean:

public int increment () {
Systemout.println("lIncrenenting counter[" + counter.getCounterld() +"]1");
return counter.increnment();

}

public int decrenent () {
Systemout. println("Decrenenting counter[" + counter.getCounterld() +"]1");
return counter.decrenent();

}

public int value() {
return counter. getVal ue();
}

public void ejbActivate() {
Systemout.println ("ejbActivate (" + ctx.getPrimaryKey() + ")");

}

public void ejbPassivate() {

}

public void ejbPostCreate(String counterld) {
}

The following method creates and initializes the shared mapper, mapper, used by this entity bean. The
mapper object handles the object-relational mapping of counter entity beans to the database. The
following code demonstrates two different ways to create the mapper object. The first and simplest way
is to load the required data source and the mappings from a mapper configuration file. Alternatively, the
mapper object can be instantiated by directly invoking dbMapper class methods (please see the code
within the comments).

/*

private void initDBIf () throws Exception {

if (mapper !'= null) {
return;
}

/1 Get the shared singelton DBModul e instance

Systemout.printin ("Loading DB Mapper file and creating the napping "
+ "context");

DBModul e dbm = DBModul e.init ("/dbmapper.xm");

mapper = dbm creat eDef aul t Mapper ("default");

/1 Uncomment following if dont want to use XM files

/1 Fol |l owi ng code creates mapper using dbMapper classes directy (refer to
/'l javadoc APl for details)

DBMbdul e dbm = DBMbdul e.init();

ORMBpENntry mapEntry = new ORMapEntry();

mapEntry. set Cl assNanme (Count er Bean. cl ass. get Nane()) ;

68 of 69

*/

dbMapper User Guide

mapEnt ry. set Tabl eNanme ("deno_counter");
ORFieldlinfo[] fields = new ORFieldlnfo [2];

fields[0] = new ORFieldlnfo (mapEntry, "counterld", null, null, true,
new ORFi el dl nfo. Basi cTypelnfo("String", "id"));

fields[1]] = new ORFieldlnfo (mapEntry, "value", null, null, false,
new ORFi el dl nfo. Basi cTypelnfo("int", "value"));

mapEntry. setFields (fields);
ORMappi ngl nfo mappi ngl nfo = new ORMappi ngl nfo();
mappi ngl nf o. add (mapEntry);

com nec. tdd. t ool s. dbMapper . JNDI Dat aSour ce ds =
new com nec. t dd. t ool s. dbMapper . JNDI Dat aSour ce ("] dbc/ Oracl eCoreDS") ;

mapper = new Def aul t Mapper (ds, mappinglnfo);

69 of 69

	Introduction
	Using a DBInterface
	Field Types
	Basic Field
	Nested Field
	Complex Field
	Complex Collection Field

	Key Fields and Primary Keys
	Data-Source, Mappings, Mapping Contexts, and Mappers
	Transaction Model
	DBInterface Methods
	Creating a User Object
	Removing a User Object
	Updating a User Object
	Finding User Objects
	Finding Primary Keys
	User-managed Transaction Methods
	Other Direct Database Access Methods
	Creating a DBInterface
	Introduction
	Overview of Key Classes, Concepts, and Data
	DefaultMapper Class
	DBModule Class
	Mapper Configuration Files
	Data Sources and the DataSource Interface
	Mapping Set Files
	Custom Database Processing: DAOs (Data Access Objects) and the DAOInterface
	Configuring Mappers Via The Programming API

	Creating a Mapper Configuration File
	logging Element
	data_sources and data_source Elements
	basic_data_source Element and BasicDataSource
	connection_pool Element and ConnectionPoolDataSource
	jndi_data_source Element and JNDIDataSource
	custom_data_source Element

	mapping_contexts and mapping_context Elements
	or_mapping_files and or_mapping_file Elements

	Creating a Database Connection File
	DTD for Database Connection Files
	Sample Database Connection File

	Creating an Object-relational (OR) Mapping File
	mappings and mapping Elements
	field Element
	is_key Attribute
	get_method Element
	set_method Element
	Field Type
	basic_type Element
	nested_type Element
	complex_type Element
	element_mapref Element
	key_bindings Element
	complex_collection_type Element

	Primary Key Class

	Developing With dbMapper
	System Requirements
	Installation Tasks
	Building the dbMapper Package
	dbMapper Examples
	Running the Examples
	Setting Up Your Environment
	Example Directory Structure
	Compiling an Example
	Running an Example

	Example1 Œ DataSources
	Example2 Œ Basic Type
	Example3 Œ User Class (User-defined Primary Key Class and Basic Types)
	Example4 Œ Transaction
	Example5 Œ Nested Field
	Example6 Œ Person Class (Complex and Complex Collection Fields)
	Compiling and Running This Example
	Counter Entity Bean

