
 dbMapper User Guide

 1 of 69

dbMapper 2.0 User Guide

July 2003

This document is a users’ guide for Version 2.0 of the dbMapper package. The dbMapper
package implements a Data Access Object (DAO) pattern that allows an application
programmer to execute the typical create, retrieve, update, and delete (CRUD)
operations on a relational database without writing SQL code. The package
accomplishes this by using XML configuration files that specify the object-relational
(OR) mapping of Java classes together with the Java reflection API to generate the
necessary SQL statements “on the fly”. This greatly reduces the effort needed to
program the typical CRUD operations used by an application. This package also uses
the JDBC interface so that it is portable across any database that implements JDBC.
This package was developed by the ONSD Software Group of NEC America.

Prepared by:
ONSD Software Group

14040 Park Center Road, Herndon, VA 20171
NEC America

Email: onsd@necam.com

Web: http://www.onsd.nec.com/software

 dbMapper User Guide

 2 of 69

Table of Contents
1 Introduction .. 4

2 Using a DBInterface ... 5
2.1 Field Types ... 5

2.1.1 Basic Field .. 5
2.1.2 Nested Field.. 5
2.1.3 Complex Field .. 6
2.1.4 Complex Collection Field... 7

2.2 Key Fields and Primary Keys ... 7
2.3 Data-Source, Mappings, Mapping Contexts, and Mappers.. 8
2.4 Transaction Model.. 9
2.5 DBInterface Methods.. 9
2.6 Creating a User Object... 10
2.7 Removing a User Object... 11
2.8 Updating a User Object.. 12
2.9 Finding User Objects.. 13
2.10 Finding Primary Keys .. 14
2.11 User-managed Transaction Methods ... 15
2.12 Other Direct Database Access Methods... 16

3 Creating a DBInterface .. 17
3.1 Introduction .. 17
3.2 Overview of Key Classes, Concepts, and Data... 17

3.2.1 DefaultMapper Class .. 18
3.2.2 DBModule Class... 18
3.2.3 Mapper Configuration Files.. 19
3.2.4 Data Sources and the DataSource Interface .. 19
3.2.5 Mapping Set Files ... 20
3.2.6 Custom Database Processing: DAOs (Data Access Objects) and the DAOInterface 20
3.2.7 Configuring Mappers Via The Programming API.. 21

3.3 Creating a Mapper Configuration File .. 22
3.3.1 logging Element ... 23
3.3.2 data_sources and data_source Elements.. 23
3.3.3 mapping_contexts and mapping_context Elements... 27

3.4 Creating a Database Connection File .. 28
3.4.1 DTD for Database Connection Files... 28
3.4.2 Sample Database Connection File .. 29

3.5 Creating an Object-relational (OR) Mapping File... 29
3.5.1 mappings and mapping Elements... 30
3.5.2 field Element.. 31
3.5.3 Primary Key Class .. 37

4 Developing With dbMapper .. 37

 dbMapper User Guide

 3 of 69

4.1 System Requirements .. 37
4.2 Installation Tasks.. 38
4.3 Building the dbMapper Package .. 38
4.4 dbMapper Examples ... 39

4.4.1 Running the Examples.. 39
4.4.2 Example1 – DataSources.. 40
4.4.3 Example2 – Basic Type .. 43
4.4.4 Example3 – User Class (User-defined Primary Key Class and Basic Types) 47
4.4.5 Example4 – Transaction ... 51
4.4.6 Example5 – Nested Field.. 52
4.4.7 Example6 – Person Class (Complex and Complex Collection Fields)................................. 55
4.4.8 Example7 - Key Binding Field Types .. 61
4.4.9 EJB Example .. 63

 dbMapper User Guide

 4 of 69

1 Introduction

The dbMapper package provides powerful functionality to Java applications that interact with a JDBC-
capable relational database. By providing various interfaces and classes that implement a type of Data
Access Object (DAO) pattern, the dbMapper package eliminates the need for an application to write any
SQL statements to perform the typical create, retrieve, update, and delete (CRUD) operations on a
database. The following list outlines some of the main features and benefits associated with the dbMapper
package.

• Eliminates the need to write SQL statements to perform typical CRUD operations on a relational
database.

• Works with any relational database that supports JDBC.
• Gives the user complete control over which attributes of a class are persisted.
• Supports complex attributes (i.e. data members of a class) such as attributes that are themselves

objects, as well as attributes that are arrays or collections.
• Allows the user to work with simple or composite keys.
• Is designed to work well with multi-threaded applications.
• Supports transactions.
• Does not require a proliferation of new classes (as some DAO implementations do).
• Allows the user to override the default behavior of any CRUD operation for any persisted class.
• Employs various algorithms to provide high performance.
• Provides useful classes for managing database connections.

The two key components of the dbMapper package are the DBInterface interface and the
DefaultMapper class. DBInterface is an interface that encapsulates all of the typical CRUD
operations that an application might use, and presents them to the application in the object-oriented view of
the Java language. The DefaultMapper class is a concrete implementation of this interface. Internally,
the DefaultMapper and its supporting classes manage all of the SQL details needed to store objects in a
relational database via the DBInterface interface.

The rest of this document provides details and examples for the dbMapper package. The main sections are:

• Section 2, Using a DBInterface. Provides details of the DBInterface. (After reading this
section, you will have a good idea of what functionality is provided by the dbMapper package.)

• Section 3, Creating a DBInterface. Provides details on the concrete DefaultMapper
implementation of DBInterface that is provided by the dbMapper package, including the
formats of the data source, object-relational (OR) mapping, and mapping context XML files.

• Section 4, Developing with dbMapper. Provides information on installation and configuration,
as well as several detailed examples of dbMapper usage.

If you wish to first see the dbMapper package in action, you can jump directly to the “Developing With
dbMapper” section for instructions on how to get started, including how to run some examples.

 dbMapper User Guide

 5 of 69

2 Using a DBInterface

The DBInterface interface provides an object-oriented view of data stored in relational database tables.
It encapsulates database operations such as creating, modifying, querying, and deleting objects in the
relational database. In the “DBInterface Methods” section, the DBInterface methods are described.
First, however, we discuss some concepts that relate to DBInterface implementations in general.

2.1 Field Types

The dbMapper package achieves the persistence of Java objects by mapping the fields (i.e. attributes, or
data members) of objects into tables of a relational database. An understanding of the capabilities and
limitations of the dbMapper package is closely related to the types of fields that the package is able to
persist, and how they map to the relational database. This section enumerates and describes the precise set
of field types that the dbMapper package is able to persist.

The first two field types to be discussed are “basic” and “nested” fields. These types are similar in the
sense that they may be stored in a single column of a relational database table. The other two types of fields
used by the dbMapper package are the “complex” and “complex collection” fields. These types are more
complicated in the sense that multipe columns, rows, or tables may be needed to store them. The following
sections provide precise definitions of these types and their relationships to a relational database.

2.1.1 Basic Field

The simplest type of field is referred to as a “basic field”. A basic field is defined to be a field of any of the
following types: int, short, byte, char, long, float, double, String,
Integer, Short, Byte, Character, Long, Float, Double. In general, storing a basic
field to a database is a relatively simple operation. For example, in the case of a relational database, a basic
field can be stored in a single column of a database table. The Person class, which is shown below, is an
example of a class whose fields are all basic fields. This class is mapped to a single table in a relational
database, person_table. Note that the dbMapper package requires all basic fields of any particular
class to map to a single relational database table.

class Person {
 String firstName;
 String lastName;
 int socialSecNum;
 boolean isLiving;
}

create table person_table (
 firstname VARCHAR(64),
 lastname VARCHAR(64),
 ssn INTEGER,
 living CHAR(1)
)

2.1.2 Nested Field

A basic field may be nested within another field of a Java object. In that case, the field is referred to as a
nested field. For example, address.street, address.city, address.state,
address.zip.zipCode and address.zip.zip4Code are nested fields of the Person class:

class Zip {
 int zipCode;

 dbMapper User Guide

 6 of 69

 int zip4Code;
}
class Address {

 String street;
 String city,
 String state;
 Zip zip;
 }

class Person {
 String firstName;
 String lastName;
 int socialSecNum;
 boolean isLiving;
 Address address;
}

In the previous section, it was noted that the dbMapper package requires all basic fields to be mapped to a
single relational database table. We now extend this requirement to include nested fields. In other words,
the dbMapper package requires that all basic and nested fields, for any particular class, map to a single
relational database table. In this example, all of the fields of the Person class, which are of the basic and
nested types, are mapped to a single table named person_table:

create table person_table (
 firstname VARCHAR(64),
 lastname VARCHAR(64),
 ssn INTEGER,
 living CHAR(1),
 street VARCHAR(64),
 city VARCHAR(64),
 state CHAR(2),
 zip INTEGER,
 zip4 INTEGER
)

Note that basic and nested fields are very similar. The main reason for distinguishing them as two different
field types is that they must be handled a bit differently from the programming point of view.

2.1.3 Complex Field

A field is called a complex field if it is not a basic or nested field and there is a one-to-one relation between
this field and the class that contains it (i.e. the field is not a collection or some other class that holds many
objects). A typical example is a field whose type is some user-defined class. In general, database storage
of a complex field is more complicated. In a relational database for example, a complex field and the
object that contains it may be stored in different tables.

In the following example, the favoriteMovie field is a complex field of the Person class. A database
for this example might be designed so that favoriteMovie field is a reference to an entry in a movie
table that contains Movie objects.

class Movie {
 String title;
 int year;
 String producer;
 String director;
 Person person; // Store reference to the parent person object
}
class Person {
 String firstName;
 String lastName;

 dbMapper User Guide

 7 of 69

 int socialSecNum;
 boolean isLiving;

 Movie favoriteMovie;
}

2.1.4 Complex Collection Field

A field is called a complex collection field if there is a one-to-many relation between this field and the class
that contains it. A typical example of a complex collection field is a field that is an array or collection. In
the following example, the favoriteMovies field is a complex collection field. Once again, the storage
of this type is more complicated than the storage of a basic or nested field.

class Person {
 String firstName;
 String lastName;
 int socialSecNum;
 boolean isLiving;

 Movie[] favoriteMovies;
}

Note that the dbmapper package works with complex collection fields that are arrays or collections of
complex fields. Collections and arrays of basic fields are not supported.

Note: While the DBInterface itself does not distinguish between these different field types, any
concrete implementation of that interface certainly must deal with them. Also, note that basic fields do
play a special role in the definition of the “primary key” concept used by the dbMapper package. This
concept is discussed in the following section.

2.2 Key Fields and Primary Keys

For certain operations, such as locating an object in a database for an update, the concept of a key is
needed. In the case of a relational database, for example, records of a table may be located by the use of a
primary key, which is a set of entries from one or more columns of the database record. The dbMapper
package uses an analogous definition of a primary key. Specifically, a primary key for a Java class is
defined to be a set of fields for that class that uniquely identifies that object. Each field of this primary key
is referred to as a key field. In keeping with the analogy of a relational database key, a key field must be a
basic field, which by definition corresponds to an individual column in a database table.

The definition of a primary key for a class that uses the dbMapper package is optional. However, as
mentioned above, certain operations such as updating objects, deleting or finding objects by key, etc., do
require that a primary key be defined.

Another concept related to primary keys is that of a primary key class. A primary key class is merely a
class that encapsulates all of the key fields of the primary key. Some of the DBInterface methods, such
as findByPrimaryKey(), or findAllPrimaryKeys(), require that a primary key class be
defined. In the case where a primary key consists of a single key field, there is no need for an application
to define a primary key class. It is already provided by a Java class. For example, if a primary key for a
class consists of a single field of type int, the java.lang.Integer class serves as the primary key
class. However, for primary keys that consist of multiple key fields, it is up to the application to provide a
primary key class.

 dbMapper User Guide

 8 of 69

2.3 Data-Source, Mappings, Mapping Contexts, and Mappers

Any implementation of DBInterface must have some specific information about the objects to be
saved, and the database to which they are saved. The required information is provided by “mapping
contexts”, which consist of “data sources” and “class mappings” (or “mapping sets”). These terms are
defined below:

Data Source
The information that specifies the database and the means by which it is accessed it is called a data source.
For instance, a data source might be a class that provides access to connections on a specified database.

Class Mapping or Mapping
A class mapping, or simply mapping, provides the information that is needed by an implementation of
DBInterface to store objects of a specific class in a database. For example, a mapping may specify the
relational database table columns that are used to store fields of a class. Note that a single class may have
multiple mappings. An example that motivates the use of multiple mappings is described below under the
“Mapping Context” heading.

Mapping Set
A mapping set is simply a set of mappings (for a set of classes). Since a mapping provides information for
just one specific class, a mapping set is needed when the database is used to store objects of different
classes.

Mapping Context
It is important to note that a single application may want to store different instances of a particular class in
different tables, or even different databases. Furthermore, it may even want to use different mappings for
the same class, depending on the context in which they are being used. The concept of a mapping context
is used to provide this flexibility. By definition, a mapping context is a combination of a data source and a
mapping set. By instantiating DBInterface objects with different mapping contexts, context sensitive
database storage and retrieval can be achieved. This concept, which is a central concept used by the
dbmapper package, is further illustrated in the following example:

Mapping Context Example

Consider an application that notifies clients of new Widget instances by writing the new instances into the
clients’ respective databases. The widget table used by the first client only contains the two columns:
field1 and field2. The other client uses a new column, named newField, as well as the field1
and field2 columns. For this example, we assume that the column names in the relational databases
match the field names of the Widget attributes.

class Widget {
 String field1;
 String field2;
 String newField;
}

Now consider that the application is using a concrete implementation of the DBInterface called
DefaultMapper, which takes a mapping context as a constructor argument. In that case, the application
could instantiate two instances of the DefaultMapper. One instance would be instantiated with a
mapping context for the first client, and another would be instantiated with a mapping context for the
second client. The first mapping context would contain the information needed by the DefaultMapper
to write objects into the two columns, field1 and field2, of the database belonging to the first client.
The second mapping context would contain the information needed by the DefaultMapper to write
objects into the three columns, field1 and field2 and newField, of the database belonging to the
second client. The application code would look something like this (note that the classes and method

 dbMapper User Guide

 9 of 69

signatures used in this example are all fictional; they are only used to demonstrate the concept and utility of
mapping contexts):

// use mapping context for client1
DBInterface dbi1 = new DefaultMapper(mappingContext1);
// use mapping context for client2
DBInterface dbi2 = new DefaultMapper(mappingContext2);
…
Widget widget = new Widget(…);
dbi1.create(widget); // write the widget to the first client’s database
dbi2.create(widget); // write the widget to the second client’s database

In general, all methods executed by a DBInterface object are done in the context of a mapping context.
The exact information that must be included in a mapping context is defined by the concrete
implementation of the DBInterface interface that is used. For example, the mapping context
information that is needed by the DefaultMapper class, which is a concrete DBInterface
implementation provided by the dbMapper package, is described in detail in the Creating a DBInterface
section.

Mapper

The term mapper refers to any object that implements the DBInterface interface.

2.4 Transaction Model

All DBInterface operations occur within the context of a transaction. Such transactions are expected to
satisfy the ACID (atomic, consistent, isolated, durable) conditions. While it is up to the concrete
implementations of DBInterface to implement transactions, the DBInterface interface does provide
some useful methods for modeling transactions. The following paragraph describes the basic behavior that
DBInterface implementations are expected to follow with respect to transactions. A more complete
description is provided in the “User Managed Transaction Methods” section.

By default, each single update, create, or delete method called on a DBInterface object is expected to
occur in the context of a single transaction that is transparent to the user. However, in a situation where a
user wants to execute a set of DBInterface methods as a single transaction, the DBInterface
interface provides methods that let an application specify the start and end of a transaction. It is up to the
DBInterface implementation to ensure the atomicity of the set of operations that are executed between
the start and end of the transaction.

2.5 DBInterface Methods

All of the methods defined by DBInterface are provided in the following list. Subsequence sections
provide explanations of the various methods and their usage. In some cases, sample code snippets are used
to illustrate the simplicity of using this interface. For more detailed technical information on the
DBInterface methods, please refer to the dbMapper javadoc API (in the “doc/javadoc” directory) and
the demo code (in the “examples” directory).

create methods
create() // write an object to the database,
 // basic and nested attributes[1] only
createTree() // write an entire object containment tree to the database

delete methods

 dbMapper User Guide

 10 of 69

delete() // delete an object from the database
deleteByAttributes() // delete objects with certain attribute values
deleteByPrimaryKey() // delete objects with certain key values

update methods
update () // update an object in the database,
 // basic and nested fields[1] only
updateTree () // update an entire object containment tree in the database

finder methods
findAll () // get all objects of a specific class from the database
findAllPrimaryKeys () // get all primary keys for a specific class
findByAttributes () // get all objects that match certain attribute values
findByPrimaryKey () // get the object for the specified key
findByQuery () // get a set of objects using a user-defined SQL query

findPrimaryKeysByAttributes () // get a set of keys for objects that match
 // specified attribute values
findPrimaryKeysByQuery () // get a set of keys using a user-defined SQL query

other (custom SQL) methods
executeQuery() // execute an SQL query, and return the result set
executeUpdate() // execute an SQL INSERT, UPDATE, or DELETE statement

transactional methods
beginTransaction() // begin a transaction
commitTransaction() // commit a transaction
rollbackTransaction() // rollback (cancel) a transaction
isActiveTransaction() // determine if the current thread is executing a transaction

Note 1 The concept of basic and nested fields is described fully in the “Field Types” section.

2.6 Creating a User Object

The create(Object) method
This method creates a new entry in the database for the specified object. Note that this method saves only
basic and nested attributes. (To include complex and complex collection fields, use the createTree
method.) This method throws an exception if an error occurs, e.g. a primary key violation, mapping not
found, etc.

The following code snippet creates a new Point object and persists its basic and nested fields to the
database:

Point p = new Point (33.4, -87.9);
dbIf.create (p);

The createTree (Object) method
This method creates a new entry in the database for the specified object. In contrast to the create
method, this method saves all field types, including the complex and complex collection types. As a result,
a call to this method, which employs a recursive algorithm, saves the entire containment tree represented by
the Object to the database. For example, a complex field of a saved object might contain another complex
field, and that field itself might contain another complex field, etc.

The following example demonstrates the createTree method usage for a Path object composed of
basic, complex, and complex collection fields. In this example, a path is made of PathElement objects,
which are in turn made of Point objects. Thus, creation of a path object results in persistence of the
entire containment tree, including all intermediate PathElement objects, as well as the leaf node Point
objects.

 dbMapper User Guide

 11 of 69

Path path = new Path (pathId);
path.setCyclic(isCyclic);
PathElement elem1 = new PathElement(new Point(1, 10), curvature1);
elem1.setWidth(width1);
path.addElem (elem1);
//Create and customize PathElement elem2
............
path.addElem (elem2);

// Persist entire Path object containment tree to database.
dbIf.createTree (path);

The createTree (Object,int) method
The second form of createTree limits the recursion depth to the value specified by the int parameter.
For example, if the recursion depth is set to a value of zero, only the basic and nested fields of Object are
persisted. Thus the following two calls are equivalent: createTree(userObj,0) and
create(userObj). If the recusion depth is set to a value of one, the basic and nested fields one level
lower (i.e. the basic and nested fields of any complex or complex collection fields of Object) are saved. As
a result, if the recursion depth is sufficiently large, the entire containment tree is saved. Thus calls to
createTree(userObj, aLargeNumber) and createTree(userObj) are equivalent.

If the example used in the createTree(Object) section were modified so that were not necessary to
save the Point objects to the database, then the following line of code could be used.

dbIf.createTree(path,1);

In this case, the Point objects (i.e. the fields of the Point objects) are not stored, since they occur at a
recursion depth of two. All basic and nested fields of the path object, which corresponds to a depth of
zero, and the PathElement objects, which correspond to a depth of one, are saved to the database.

2.7 Removing a User Object

This section discusses various methods that may be used to remove objects from the database. Note that
removal of an object from a database includes removal of the entire containment tree represented by that
object.

The delete(Object userObject) method
This method removes a specified user object from a database (if it can be found). An exception is thrown if
a database error occurs. The following code snippet removes a Person object from a database:

dbIf.delete (person);

The deleteByPrimaryKey(Object primaryKey, Class userObjectClass) method
This method removes the user object specified by a primary key. The following example removes a
Person object:

PersonKey pk = new PersonKey (firstName, middleName, lastName,
 homePhoneNumber);
dbIf.deleteByPrimaryKey (pk, Person.class);

The deleteByAttributes(AttrValMap attributes, Class userObjectClass) method
This method removes all objects of the specified class whose field values match those specified in the
attribute value map. Attributes specified in the attribute value map need not be key fields. The following
code snippet removes all Person objects with last name “Smith” from the database:

 dbMapper User Guide

 12 of 69

AttrValMap attrValMap = new AttrValMap();
attrValMap.put (“lastName”, “Smith”);
dbIf.deleteByAttributes (attrValMap, Person.class);

2.8 Updating a User Object

The update(Object userObject) method
This method updates an existing database entry with the contents of userObject. The database entry is
located using the primary key information stored in userObject. Note that this method only updates
non-key basic and nested fields. To include complex and complex collection fields as well, the
updateTree method, which is described below, must be used. An exception is thrown if an error occurs,
e.g. database constraint violation, mapping not found, etc. .

The following code snippet creates a new persistent Person object, updates some fields (e-mail,
address and fax number) of the object, then applies these changes to the database:

Person p = new Person (fistName, middleName, lastName, homePhoneNumber);
p.setEmail(“someone@somewhere.com”);
p.setFax(“(111)222-3456”);
dbIf.create(p);
p.setEmail(“someone@somewhere_else.com”);
p.setFax(null);
dbIf.update (p);

The updateTree(Object userObject) method
Similar to the the createTree(Object) method, this method employs a recursive algorithm to update
to the entire containment tree in the database for the specified userObject. As in the case of the
create method, updates will be applied recursively starting from the specified object, userObject,
down to all leaf nodes of the object containment tree. This method saves all field types (i.e. basic, nested,
complex, and complex collection fields).

The following example demonstrates use of the updateTree method for a Path object composed of
basic, complex and complex collection fields:

Path path = // Create and fill Path object containment tree
dbIf.createTree (path); // Persist entire Path object containment tree
 // to database.
path.setCyclic(false);
// Delete first PathElement from the path
path.removeElem(path.getElem(0));
// Modify an existing PathElement
PathElement elem2 = path.getElem(1);
elem2.setWidth(anotherWidth);
Point p = elem2.getPosition();
p.setY(-7);
// Add a new PathElement
PathElement elem3 = new PathElement(new Point(4, 14), curvature3);
path.addElem (elem3);

dbIf.updateTree (path); // Apply all the changes in Path object
 // containment tree to database.

The updateTree(Object userObject, int) method
This method recursively updates all of the fields of the specified userObject within a given recursion
depth, as specified by the int parameter. As in the case of the create method, the value of int specifies
the number of levels for which the update is called. For example, a value of one will update the parent

 dbMapper User Guide

 13 of 69

object and all objects just below the parent object. To restrict updates to a depth of one in the above code,
the following code snippet can be used:

dbIf.updateTree (path,1); // update Path and PathElements, but not Points

The update(Object userObject, AttrValMap attrValMap, boolean bUpdateUserObject) method
This method saves specified fields of a user object to the database. The key fields of userObject should
not be modified so that the corresponding database record can be located. The attrValMap contains a
set of attribute/value pairs that specify the field values to be updated. The bUpdateUserObject flag
indicates whether the changes are to be applied to the user object after a successful database update. This
flag can be useful in the context of a transaction, where the user may not want the values of the original
object to be changed until the transaction is committed. The following example updates selected fields to
the database:

Person p = // Create and fill person object containment tree
dbIf.createTree (p); // Persist person object containment tree
 // to database.
AttrValMap attrValMap = new AttrValMap();
attrValMap.put (“email”, “abc@xyz.com”);
attrValMap.put (“address”, new Address (“Street, #Apt”, “city”, “state”,
 zipCode));
dbIf.update (p, attrValMap, true);
String emailAfterUpdate = p.getEmail();
// emailAfterUpdate should be set to “abc@xyz.com”

The update(Object userObject, HashMap attrValMap, boolean bUpdateUserObject) method
This method is identical to the previous update method, except that the set of attribute/value pairs is
specified by a HashMap instead of an AttrValMap data structure.

HashMap hValMap = null;
Person p = // Create and fill person object containment tree
dbIf.createTree (p); // Persist person object containment tree
 // to database.
hValMap = new HashMap(2);
hValMap.put (“email”, “abc@xyz.com”);
hValMap.put (“address”, new Address(“Street, #Apt”, “city”, “state”,

zipCode));
dbIf.update(p, hValMap, true);
String emailAfterUpdate = p.getEmail();

// emailAfterUpdate should be set to “abc@xyz.com”

2.9 Finding User Objects

The findByPrimaryKey(Object primaryKey, Class userObjectClass) method
This method returns an object, populated with basic and nested fields only, corresponding to the database
entry that matches the specified key and class. (To get an object with all fields populated, use the version
of this method below.) An exception is thrown if an error occurs, e.g. invalid primary key, mapping not
found, etc. The following code snippet locates the Person object specified by the primary key class:

PersonKey pk = new PersonKey (fistName, middleName, lastName,
 homePhoneNumber);
Person p = dbIf.findByPrimaryKey (pk, Person.class);

The following code loads a Path object from the database by specifying a single primary key:

Path path = dbIf.findByPrimaryKey (new Integer(pathId), Path.class);

 dbMapper User Guide

 14 of 69

The findByPrimaryKey(Object primaryKey, Class userObjectClass,int depth) method
This method returns an object, populated up to the specified recursion depth, corresponding to the database
entry that matches the specified key and class. This method can be used to load part or all of a user object
containment trees. This method tries to recursively load all objects, starting from the object identified by
the primaryKey, and terminating at the specified recursion depth. The following code snippet loads
the entire object containment tree from database for a path object specified by a primary key:

Path path = dbIf.findByPrimaryKey (new Integer(pathId), Path.class,
 9999);
int w = path.getElem(0).getWidth(); // Access an object in the
 // containment tree

The findByAttributes(AttrValMap attributes, Class userObjectClass) method
This finder method returns a collection of user objects whose field values match those specified in the
specified attribute value map. The attribute value map is expected to contain at least one attribute. Also all
the attributes should be limited to basic fields. The findByAttributes method can be used in place of
the findByPrimaryKey method by storing all of the key field values in the attribute value map. This
technique is most useful for cases where a primary key class is not defined. The following example returns
all of the Person objects with last name “Smith” from the database:

AttrValMap attrValMap = new AttrValMap();
attrValMap.put (“lastName”, “Smith”);
Collection smiths = dbIf.findByAttributes (attrValMap, Person.class);

The findAll(Class userObjectClass) method
This method retrieves all user objects that belong to the specified class. Only basic and nested fields of the
objects will be retrieved when this method is used. The following piece of code loads all Person objects:

Collection people = dbIf.findAll (attrValMap, Person.class);

The findByQuery(String query, Class userObjectClass) method
Although the finder methods described above should fulfill the needs of most applications with regard to
loading user objects from a database to memory, there may still be a need to allow the user to use custom
SQL queries to retrieve a set of user objects from the database. Examples of such cases are relational table
joins, sub-queries, etc. The findByQuery method allows execution of such custom SQL queries. The
resulting user objects are returned in a Collection object. The SQL query is expected to be a valid
JDBC query, which should return database rows that contain all of the fields defined by the mapping for
this object. One should use this method only if none of the other finder methods (findByPrimaryKey,
findByAttributes, findAll) serves the purpose. This method is the most flexible of all finder
methods, but requires that SQL details be included in the user code, which is generally not desirable. The
following code snippet demonstrates the usage of the findByQuery method:

// Find all the points lying within 10-unit radius from point (4, 5)
String query = “select x, y from point_table where
 (((x-4)*(x-4)+(y-5)*(y-5)) <= 100)”
Collection points = dbIf.findByQuery(query, Point.class);

The findByAttributes, findAll, and findByQuery methods only fill the basic fields of the user
object(s).

2.10 Finding Primary Keys

The primary key finder methods have signatures very similar to those described in the “Finding User
Objects” section.

 dbMapper User Guide

 15 of 69

The findPrimaryKeysByAttributes(AttrValMap attributes, Class userObjectClass) method
This method returns a collection of primary key objects whose field values match those specified in the
attribute value map. The following example returns all of the Person primary keys for all objects in the
database (in the mapping context of dbIf) whose last name is “Smith”:

AttrValMap attrValMap = new AttrValMap();
attrValMap.put (“lastName”, “Smith”);
Collection smithKeys = dbIf.findPrimaryKeysByAttributes (attrValMap,
 Person.class); // Collection of PersonKey objects

The findAllPrimaryKeys (Class userObjectClass) method
This method retrieves all primary key objects belonging to the specified class.

Collection personKeys = dbIf.findAllPrimaryKeys (attrValMap,
 Person.class); // Collection of PersonKey objects

The findPrimaryKeysByQuery(String query, Class userObjectClass) method
This method returns a collection of primary key objects based on a specified SQL query. This method
should only be used if none of other primary key finder methods (findPrimaryKeysByAttributes,
findAllPrimaryKeys) can serve the purpose. The SQL query is expected to return database rows that
contain all of the key attributes defined by the class mapping of the specified userObjectClass. The
following code finds all the primary key objects associated with people whose phone numbers are listed
with ”Verizon”.

String query = “select p.firstname, p.middlename, p.lastname, p.homephone
 from PERSON p, PHONE_COMPANY c where c.company=’Verizon’
 and c.homephone=c.phonenumber and c.firstname=p.firstname
 and c.middlename=p.middlename and c.lastname=p.lastname”
Collection verizonKeys = dbIf.findPrimaryKeysByQuery(query,

 Person.class); // Collection of PersonKey objects

2.11 User-managed Transaction Methods

The previous section dealt with the various atomic DBInterface methods, for which transactions are
handled internally within the methods themselves. However, DBInterface also allows the application
to manage transaction boundaries across a set of DBInterface method invocations. This allows users to
create their own transactions when multiple updates need to be done as part of an atomic operation. One
simple restriction placed on these transactions is that they are all executed within a single thread. Multiple
threads cannot participate in the same transaction.

The beginTransaction() method
This method creates a new transaction and associates it with the current thread. After successful invocation
of this method, all DBInterface methods called from the same thread are executed as part of this
transaction. The same database resource (connection) is used for all method invocations belonging to this
transaction, and the results are applied to the database only when the user explicitly terminates the
transaction for the current thread with the commitTransaction() method.

The isActiveTransaction() method
This boolean method indicates whether the current thread is actively involved in a transaction. A value of
true is returned if the thread is in an active transaction. Otherwise, false is returned.

The commitTransaction() method
This method commits all of the database changes made in the transaction associated with the current thread.
When this method completes, the thread is no longer associated with a transaction. This method ensures

 dbMapper User Guide

 16 of 69

that all changes are applied to the database in an atomic manner. If any single update within this
transaction fails (database corruption, disk space problem etc) then all the updates will be rolled back.

The rollbackTransaction() method
A call to this method rolls back all the database changes made within the current transaction (i.e. all calls
made in this thread since beginTransaction() was called). This method can be invoked at any point
of time within a transaction. When the rollbackTransaction()method completes, the thread is no
longer associated with a transaction.

The following example demonstrates a typical transaction. This example describes the processing that
occurs when a customer books a flight. The database needs to be updated with the payment information,
reservation details and ticket details in a single atomic operation. Otherwise, if a ticket object creation
were to fail after the corresponding payment object had already been successfully updated, this might
lead to one very irate customer! By using the transaction, this code ensures that all three objects are stored
or none are stored. Thus, the customer will not be charged unless his ticket is created.

dbIf.beginTransaction();
try {
 Reservation reservation = new Reservation (customerId, price, date);
 Payment payment = processCreditCardPayment (customerId, price,
 creditCardInfo);
 Ticket ticket = new Ticket (customerId, date);
 dbIf.create (reservation);
 dbIf.create (payment);
 dbIf.delete (ticket);
 dbIf.commitTransaction();
 issueTicketToCustomer(ticket);
}
catch (Exception ex) {
 ex.printStackTrace();
 dbIf.rollbackTransaction();
}

2.12 Other Direct Database Access Methods

Although the DBInterface methods handle most typical database operations that an application needs,
there are some complex cases, such as relational table joins, sub-queries, etc., in which an application
programmer may need to execute custom SQL queries. The DBInterface provides a set of methods that
support such custom database operations.

The getConnection method
This method allows a user to get a direct connection to the database, so that custom queries, updates, or
other custom database operations may be performed. The nature of the connection is determined by the
data source of the mapper (i.e. concrete DBInterface implementation) that is being used. For example,
a mapper may use a connection pool that is shared among several mappers as its data source. In that case,
the getConnection method returns one of the free connections from that pool.

The releaseConnection method
This method is used to release a connection obtained by the getConnection method. It should be
called when a connection obtained by getConnection is no longer in use. Note that failure to release
connections obtained by the getConnection method may exhaust all connections that are available
through getConnection.

The executeQuery(java.lang.String query) method

 dbMapper User Guide

 17 of 69

This method executes an SQL statement that returns a single ResultSet object and returns the
java.sql.ResultSet object to the caller. Typically, the query is a static SQL SELECT statement.
The user should close the returned result set before invoking another DBInterface method.

The executeUpdate(java.lang.String query) method
This method executes an SQL INSERT, UPDATE or DELETE statement, or an SQL statement that returns
nothing. It returns either the row count for the INSERT, UPDATE or DELETE statement, or zero for SQL
statements that return nothing.

The following code snippet gets a database connection, performs some operations on it, and then releases it.

DBConnection conn = dbIf.getConnection();
java.sql.ResultSet rs = null;
if (null != conn) {
 try {
 java.sql.Statement stmt = conn.getConnection();
 rs = stmt.executeQuery (query);
 // perform some operations on result set
 rs.close();
 int rows = stmt.executeUpdate(updateQuery);
 }
 finally {
 if (null != rs) {
 try { rs.close(); } catch(Exception innerEx) {}

 }
 // No need to close statement as its lifecycle
 // is maintained by DBInterface
 dbIf.releaseConnection();
 }
}

3 Creating a DBInterface

3.1 Introduction
The previous section described the DBInterface interface in detail, including a discussion of relevant
concepts, as well as a detailed explanation of the methods provided by that interface. This section
discusses the concrete implementation of DBInterface that is provided by the dbMapper package, as
well as other supporting classes and interfaces. The two key classes of the dbMapper package are the
DBModule and DefaultMapper classes. The DefaultMapper is a concrete implementation of the
DBInterface interface, and the DBModule class is used to instantiate DefaultMapper instances.
Use of these classes eliminates the need for the application programmer to write SQL code to perform
standard database operations related to the persistence of Java objects in relational databases.

Before discussing details of the programming API and configuration files that are needed to use the
dbMapper package, an overview of the key concepts and terms is provided in the following section. It may
also be useful to review the “Using a DBInterface” section before reading this section.

3.2 Overview of Key Classes, Concepts, and Data

This section discusses the two key classes of the dbMapper package, DBModule and DefaultMapper,
and the concepts, terminology, and data files associated with them. This section assumes that the reader is

 dbMapper User Guide

 18 of 69

already familiar with the concepts presented in the “Data-Source, Mappings, Mapping Contexts, and
Mappers” section, such as mappings, mapping sets, mapping contexts, and mappers.

3.2.1 DefaultMapper Class

The DefaultMapper class is a concrete implementation of the DBInterface interface. It is the
workhorse of the dbMapper package. Each instance of the DefaultMapper class, which we refer to as a
“mapper”, is associated with a single mapping context. Recall that a mapping context, which consists of a
data source and a mapping set, specifies information that allows a DBInterface instance to save
instances of specified Java classes to a specified relational database. The relational database and the means
to access it are encapsulated in the data source. The Java classes that may be persisted, and the mapping
details needed to accomplish persistence in a relational database, are encapsulated in the mapping set.

Note that two features of the DefaultMapper class are (1) the ability to manage transactions, and (2) a
flexible mechanism for overriding the default behavior of any subset of DBInterface methods for any
mapped class. The implementation of transactions is discussed in the “Transaction Model” and “User-
managed Transaction Methods” sections, and the mechanism for overriding default behavior is discussed in
the “Custom Database Processing: DAOs (Data Access Objects) and the DAOInterface” section.

3.2.2 DBModule Class

The dbMapper package provides a singleton class, DBModule, which initializes the dbMapper package
and manages the creation of all mappers required by an application. In the following example, the
dbMapper package is initialized, and two mappers are created.

// Initialize the dbMapper library
DBModule dbm = DBModule.init(“dbmapper.xml”);
// Get a DefaultMapper (database interface) for the specified mapping
context
DBInterface dbIf1 = dbm.createDefaultMapper(“my_context1”);
DBInterface dbIf2 = dbm.createDefaultMapper(“my_context2”);

The “dbmapper.xml” argument to the init method specifies the name of the mapper configuration file
to be used by the application. A “mapper configuration file”, which is created by the application
programmer, includes all of the information needed to instantiate mappers, including the specification of
one or more mapping contexts. These mapping contexts, which are identified by name, are passed as
arguments to the createDefaultMapper method to create specific mappers. (Refer to the “Mapper
Configuration Files” and “Creating a Mapper Configuration File” sections for a detailed description of the
content and format of these files.)

As discussed above, the init method of the DBModule class takes a mapper configuration file as an
argument. However, the mapper configuration file itself may refer to other supporting files: namely class
mapping files and database connection files. The appropriate init method to be used depends on how the
mapper configuration file and the supporting files are organized. The following list describes the available
options.

• init (String startingDir, String configXMLFile). This method initializes DBModule with data
from the mapper configuration file specified by configXMLFile, that is located in the “start
directory” specified by startingDir. Any supporting files referenced by the mapper
configuration file are loaded relative to the start directory. The start directory can be an absolute
path to a directory or a path relative to the application run directory. If the files are to be loaded
from a jar file, the start directory must refer to an absolute path (i.e. start with ‘/’).

 dbMapper User Guide

 19 of 69

• init (String configXMLFile). This method initializes DBModule with data from the mapper
configuration file specified by configXMLFile. All of the files (including the mapper
configuration file) will be loaded relative to the application run directory. This method is
equivalent to init(".",configXMLFile).

• init(). This method initializes DBModule without specifying any mapper configuration file. In
this case, the dbMapper package is initialized without any mapping context or data sources.
(When this method is used, the application programmer must supply configuration data to
DBModule via the programming API. Refer to the Javadoc documentation for details. The
programming API is currently not covered by this users guide.)

3.2.3 Mapper Configuration Files

The mapping contexts that are used by mappers, and the supporting data such as data sources and mapping
sets are represented in an XML file referred to as a mapper configuration file. This configuration file is
used by the DBModule class to instantiate mappers that use specified mapping contexts. A mapper
configuration file also contains other settings, such as logging settings to be used by mappers. In this
section, we give an overview of the mapper configuration file contents and format. For a complete
specification of the file format, see the “Creating a Mapper Configuration File” section.

The main section of the mapper configuration file is delimited by the <mapping_contexts> tag. This
section specifies one or more mapping contexts. Each mapping context, which is delimited by the
<mapping_context> tag, contains the following information:

• Mapping context name. The id attribute specifies the mapping context name. This name is
passed as an argument to the createDefaultMapper method of the DBModule class to
instantiate a mapper.

• Data source ID. A data source ID, which is specified by the data_source_id attribute,
specifies the data source for the mapping context. The data source itself is defined in another
section of the mapper configuration file delimited by the <data_sources> tag.

• Mapping set files. An or_mapping_files element specifies a set of one or more files
referred to as “mapping files”. Each mapping file contains mappings for one or more Java classes.
By default, all of the mappings of all specified mapping set files are included in the mapping
context. However, specific mappings within each file may be included or excluded using include
and exclude tags.

Note that the mapper configuration file format is designed so that any mapping context in the file may use
any of the data sources or mapping sets defined in the file. This provides a great deal of flexibility in
defining mapping contexts. More information on the data sources and mapping set files used by the
dbMapper package are provided in the next two sections.

3.2.4 Data Sources and the DataSource Interface

One main component of a mapping context is the data source. The data source is used by a mapper to
establish and manage connections (one or more) to a database.

All data sources used by the dbMapper package must implement the DataSource interface.
Implementations of this interface are essentially database connection managers. Internally, the dbMapper
package uses the getConnection and releaseConnection methods as needed to support the other
DBInterface methods. (Note that unless the application programmer needs to execute some custom

 dbMapper User Guide

 20 of 69

database operations, these methods need not be called by the application code. The getConnection
method is used to get a database connection object from the DataSource object. Once the connection is
no longer needed, e.g. some set of database operations have been completed, the connection should be
returned to the data source by invoking the releaseConnection method.) The dbMapper package
uses a DBConnection class to model all database connections.

Three concrete implementations of the DataSource interface are provided by the dbMapper package:

• BasicDataSource
• ConnectionPoolDataSource
• JNDIDataSource

BasicDataSource provides a single connection, while ConnectionPoolDataSource provides a
pool of connections (which is useful for multi-threaded applications). JNDIDataSource is a mere
wrapper around an installed javax.sql.DataSource that is bound to a JNDI path. These three
DataSource implementations should satisfy the requirement of most database applications in acquiring
and releasing database connections, although in some cases it may be desirable to create a custom data
source.

Note that the flexibility of data sources allows an application to fine tune how the database resources (i.e.
connections) are used. For example, in an area of the code where high performance is critical, an
application might use a mapper whose context uses a dedicated ConnectionPoolDataSource
instance, while all other areas of the code use mappers that share some other common data source.
Alternatively, if there are other special processing needs regarding the management of database
connections, a custom class that implements the DataSource interface could be implemented and used
with the dbMapper package.

3.2.5 Mapping Set Files

A second main component of a mapping context is the mapping set. The mapping set, which consists of a
set of mappings, provides all of the information needed by a mapper to persist objects for a specific set of
Java classes. Each mapping defines the information needed to persist instances of a particular class. A
mapping includes information such as which tables and columns of the database are to be used to store the
various fields of the class.

The mapping set is specified in the mapper configuration file as a set of mapping set files. A mapping set
file is an XML file that defines mappings for one or more classes. Note that although a complete mapping
set may be specified in a single file, the dbMapper package allows a set of mapping set files to be used.
Furthermore, within any mapping set file, any subset of mappings may be included or excluded from the set
using include and exclude tags. Together, these options provide flexibility that lets the application
programmer organize mappings in a way that best suits the application. For example, this makes it possible
for two different mapping contexts to contain a common subset of mappings (i.e. two mapping sets could
include the same mapping set file, so that both mapping sets contained that common subset of mappings).

3.2.6 Custom Database Processing: DAOs (Data Access Objects) and the

DAOInterface

Although the DefaultMapper class provides a default implementation for all of the database operations
defined by the DBInterface, there may be cases where an application programmer needs to provide his own
implementation. For example, he may want to implement his own algorithm for persisting instances of
some class that is too complex for the dbMapper object-relational mapping model. Or, for example,
because of some other application-specific requirement, he may want to override the default processing

 dbMapper User Guide

 21 of 69

provided for a specific method of some specific class. The use of an interface named DAOInterface
gives the programmer the capability to provide these custom implementations within the framework of the
dbMapper package.

The DAOInterface interface is essentially identical to the DBInterface interface. (Refer to the
javadoc API in the “doc/javadoc” directory for the specific definition of this interface.) An implementation
of this interface is referred to as a DAO. The dbMapper package provides a single DAO, which is named
DefaultDAOImpl. By default, each database operation that is invoked on a mapper uses a
DefaultDAOImpl object to perform that operation. (It is the DefaultDAOImpl class that
encapsulates all of the object-relational mapping processing that is done by the dbMapper package. While
the transaction and data-source logic is still handled by the DefaultMapper class, the DAOInterface
interface defines all of the methods needed to create, delete, update and query object instances of a given
class.)

To override the default database operations provided by the dbMapper package, an application programmer
must provide a custom DAO (i.e. a custom implementation of the DAOInterface). To illustrate the
point, we will use an example where an application programmer wants to override the create() method
processing for a class named MyClass. As a first step, the application programmer must derive a new
class from DefaultDAOImpl; we will call it MyDAO. Then he must override the create() method to
implement his custom processing. (Of course, if a programmer would like to provide custom
implementations for all of the methods, then he might prefer to directly provide an implementation of
DAOInterface, rather than deriving a class from DefaultDAOImpl.) Finally, the programmer must
modify the mapping for MyClass so that it uses MyDAO as its DAO (instead of the default DAO,
DefaultDAOImpl). Refer to the “mappings and mapping Elements” section for details on how to
specify a DAO for a class mapping.

As mentioned above, the DAOInterface method signatures are nearly identical to the DBInterface
method. The only difference between the DAOInterface and DBInterface methods is that the
DAOInterface methods have an extra argument of type DBConnection. To understand why, recall
that all DefaultMapper operations occur within the context of a transaction. These transactions may be
initiated by application code or by the DefaultMapper class itself to ensure the atomicity of
DBInterface operations. The connection argument provides the application programmer of a DAO
with the DBConnection object that is associated with the current database transaction (i.e. the one
associated with the current thread of execution). The application programmer is expected to use this
database connection so that the integrity of the transaction is maintained. (The programmer may create and
use his own connection, but must realize that any operations done on that connection will not be part of the
transaction being managed by the mapper that is calling the current DAO operation).

Also, an application programmer who implements a DAO is expected to throw exceptions in the DAO code
to the calling DefaultMapper class. Otherwise, the integrity of the transaction maintained by the
DefaultMapper class is not guaranteed (i.e. the commit or rollback might not give the desired result).

3.2.7 Configuring Mappers Via The Programming API

The previous sections introduced the mapper configuration file as a means to define mapping contexts.
These contexts can then be used to instantiate individual mappers using the createDefaultMapper
method of the DBModule class. Note, however, that the dbMapper package does provide a set of classes
that let the application programmer specify mapping contexts and all associated data programmatically,
instead of through configuration files. A key class for this type of development is the ORMappingInfo
class. For more information regarding this class and related classes, refer to the Javadoc API
documentation of the dbMapper package.

 dbMapper User Guide

 22 of 69

3.3 Creating a Mapper Configuration File

This section describes the content and format of mapper configuration files. For an overview of these files
and how they are used, refer to the “Mapper Configuration Files” section. The DTD file for mapper
configuration files is named “dbmapper.dtd”, and is included in the “lib/dbmapper.jar” file of the dbMapper
distribution.

A mapper configuration file is written in XML and composed of the following three elements:

• logging (optional)
• data_sources
• mapping_contexts

The logging element holds the log4j category name that dbMapper classes use to insert log and trace
output into log files.

<!ELEMENT root (logging?,data_sources,mapping_contexts)>

The data_sources element consists of a set of data_source elements. Each data_source
element contains an id attribute that uniquely identifies the data_source. Each data_source
element defines a data source and can be any of the following types: basic_data_source,
connection_pool, jndi_data_source, or custom_data_source.

The basic_data_source element represents a BasicDataSource object. The
basic_data_source element is composed of a connection_info_file and a
max_connections attributes. The connection_info_file attribute refers to a “database
connection file”(refer to the “Creating a Database Connection File” section). The max_connections
attribute specifies the maximum number of database connections that can be opened by the
BasicDataSource.

The connection_pool element represents a ConnectionPoolDataSource object that manages a
pool of database connections. The connection_pool element is composed of a
connection_info_file and several pool capacity related attributes, namely initial_capacity,
capacity_increment and max_capacity.

The jndi_data_source element describes a JNDIDataSource object. Each
jndi_data_source element contains a single jndi_location attribute that is set to the JNDI-path
of the installed javax.sql.DataSource object to which the JNDIDataSource is bound.

The custom_data_source element is used to define a custom or third-party DataSource
implementation. The custom_data_source element is composed of a class attribute and property
elements. The class attribute specifies the fully qualified class name of the DataSource interface
implementation. Each property element represents a name/value pair setting that is used to customize
the DataSource implementation. (Refer to the “custom_data_source Element” section for details.)

The mapping_contexts element consists of a set of mapping_context elements. Each
mapping_context element defines a mapping context that may be used by the application to instantiate
a mapper. Each mapping_context element is composed of an id attribute, a data_source_id
attribute, and one or_mapping_files element. The id attribute uniquely identifies the mapping
context among others. The data_source_id attribute contains a reference to a data_source
element by specifying a data source id that is defined within the mapper configuration file. The
or_mapping_files element represents the mapping set that is used by the mapping context. The
or_mapping_files element is composed of or_mapping_file elements. Each

 dbMapper User Guide

 23 of 69

or_mapping_file element contains a reference to an OR mapping file (refer to the “Creating an
Object-relational (OR) Mapping File” section for details). The or_mapping_file element may
optionally contain an includes_mapping_set or excludes_mapping_set tag. These tags are used
to select a specific subset of mappings from the file.

3.3.1 logging Element

Logging and tracing at run time are achieved by using the log4j package, which is a popular and widely
used logging package for Java. (Please refer to log4j documentation at http://jakarta.apache.org/log4j/
for details on log category and other logging concepts. Some of the explanation below assumes familiarity
with the log4j concepts). By default, all the dbMapper classes use the “dbMapper” category name for
logging. This is done to provide control over the trace messages generated by the dbMapper classes at run
time.

<!ELEMENT logging EMPTY>
<!ATTLIST logging category CDATA 'dbMapper'>

The logging element has a single attribute namely category.

Attribute Description Required
category The log4j category name used by dbMapper classes to insert logging code. No

3.3.2 data_sources and data_source Elements

The data_sources element contains all of the data sources defined for an application. It can contain
any number of data_source elements. Each data_source element has a unique id attribute that can
be used to reference it.

<!ELEMENT data_sources (data_source)+>

A data_source element encompasses all the necessary information needed to create an instance of the
DataSource interface.

<!ELEMENT data_source
(basic_data_source|connection_pool|jndi_data_source|custom_data_source)>
<!ATTLIST data_source id CDATA #REQUIRED>

A data_source element has a single mandatory id attribute. The id attribute must contain a value that
is unique among all data sources defined within the mapper configuration file.

Attribute Description Required
id The data_source (unique) identifier. Yes

A data_source element contains any of the following elements depending upon the data source type:

• basic_data_source
• connection_pool
• jndi_data_source
• custom_data_source.

The first three types correspond to the three concrete implementations of the DataSource interface
provided by the dbMapper package. These three DataSource implementations should meet the

 dbMapper User Guide

 24 of 69

connection management requirements of most typical database applications. However, in some cases it
may be desirable to create a custom class that implements the DataSource interface and associate it with
the desired mapping contexts. The custom_data_source type encapsulates all the necessary
information to create a custom DataSource implementation.

3.3.2.1 basic_data_source Element and BasicDataSource

The BasicDataSource, as indicated by its name, is a very basic implementation of the DataSource
interface. The BasicDataSource simply establishes a new JDBC connection each time the
getConnection method is invoked. The releaseConnection method simply frees all the resources
acquired by the JDBC connection.

As opening a new JDBC connection is a costly operation, this data source is only suitable for those
mappers (i.e. DefaultMapper objects) where database operations are infrequent or for one-time use
only.

The BasicDataSource object requires that a database connection file be specified. That file supplies
information that is used to locate and connect to a database, such as a JDBC driver name, URL, a user
name and password, etc. See the “Creating a Database Connection File” section for details on the file
format, parameters, and validation rules.

The basic_data_source element contains all of the information that is needed to create a
BasicDataSource object. The following DTD snippet shows the attributes for this type of data source.

<!ELEMENT basic_data_source EMPTY>
<!ATTLIST basic_data_source connection_info_file CDATA #REQUIRED>
<!ATTLIST basic_data_source max_connections CDATA '0'> <!-- unlimited -->

The basic_data_source element has two attributes:

Attribute Description Required Default
connection_info_file The name of a database connection file. Yes N/A
max_connections Maximum number of database connections that can

be opened by this data source at any given time. A
value less or equal to zero specifies unlimited
connections.

No Unlimited

3.3.2.2 connection_pool Element and ConnectionPoolDataSource

The ConnectionPoolDataSource class manages a pool of database connections so that database
resources are efficiently managed. Pooling also allows concurrent database operations in multi-threaded
applications.

A ConnectionPoolDataSource object creates a number of connections at startup (as specified by the
initialCapacity parameter) and places them in a pool. When a user requests a connection, a free
connection from the pool is returned to the user. When the user is done with a connection, he returns it
back to the pool. This data source never closes connections, but does allocate and open new connections as
required. This eliminates the overhead of closing and re-creating new connections for each request.

The maxCapacity parameter defines an upper bound on number of connections that may be created by
this data source. A value less than or equal to zero is used to specify unlimited connections.

 dbMapper User Guide

 25 of 69

If all the pooled connections for a data source are in use at the time that another connection is requested, a
ConnectionPoolDataSource object attempts to establish more database connections based on the
value of the capacityIncrement property. However, the total number of connections can never
exceed the maxCapacity value.

Here are some useful ConnectionPoolDataSource settings:

1. For a fixed size pool of n connections (all connections created at initialization time):

InitialCapacity = n; capacityIncrement = 0; maxCapacity >= n,

2. For a growing pool with upper bound, n:

InitialCapacity = c; capacityIncrement >= 1; maxCapacity = n
where 0 <= c <= n

3. For an infinitely growing pool:

InitialCapacity >= 0; capacityIncrement >= 1; maxCapacity = 0

Similar to the BasicDataSource data source, the ConnectionPoolDataSource also requires
that a database connection file be specified. That file supplies information that is necessary to locate and
connect to a database, such as its JDBC driver name, URL, a user name and password, etc. See the
“Creating a Database Connection File” section for details on the file format, parameters, and validation
rules.

The connection_pool element contains all the information needed to instantiate and configure a
ConnectionPoolDataSource object.

<!ELEMENT connection_pool EMPTY>
<!ATTLIST connection_pool connection_info_file CDATA #REQUIRED>
<!ATTLIST connection_pool initial_capacity CDATA '1'>
<!ATTLIST connection_pool capacity_increment CDATA '1'>
<!ATTLIST connection_pool max_capacity CDATA '0'> <!-- unlimited -->

The connection_pool element has four attributes:

Attribute Description Required Default
connection_info_file The name of a database connection file. Yes N/A
initial_capacity The initial capacity of the pool. No 1
capacity_increment The amount by which the capacity is increased when

the more connections are needed.
No 1

max_capacity The maximum number of database connections that
can be opened by this data source at any given time.
A value less than or equal to zero specifies unlimited
connections.

No Unlimited

3.3.2.3 jndi_data_source Element and JNDIDataSource

The JNDIDataSource data source adapts the javax.sql.DataSource interface to the dbMapper
DataSource interface. The JNDIDataSource class constructor takes the JNDI path (i.e. location) of
an installed javax.sql.DataSource as input. First, the constructor creates the initial naming context
(javax.naming.InitialContext) from the jndi.properties file located in the application’s
run directory. Next, the JNDIDataSource constructor locates the installed

 dbMapper User Guide

 26 of 69

javax.sql.DataSource object that is bound to the JNDI path. The reference to the
javax.sql.DataSource object is saved and kept for later reference.

The JNDIDataSource simply invokes the getConnection() method of the underlying
javax.sql.DataSource object each time the getConnection method is invoked. The
releaseConnection method simply frees all the resources acquired by the database connection.

The jndi_data_source element contains all the information that is needed to create a
JNDIDataSource object.

<!ELEMENT jndi_data_source EMPTY>
<!ATTLIST jndi_data_source jndi_location CDATA #REQUIRED>

The jndi_data_source element has single jndi_location attribute:

Attribute Description Required
jndi_location The JNDI-path of the installed javax.sql.DataSource object. Yes

3.3.2.4 custom_data_source Element

In some cases, an application programmer may wish to create a mapper that uses a custom implementation
of the DataSource interface. This may be done if none of the above (three) DataSource
implementations provided by dbMapper meets the application’s special processing needs.

The custom_data_source element is used to create and initialize such custom or third-party
DataSource implementations. The dbMapper requires the user to specify the fully qualified name of
the custom class that implements the DataSource interface. The custom implementation may define a
set of simple name-value (String) properties to customize the DataSource object at instantiation. In
order to pass these properties during object construction, the dbMapper expects the custom implementation
to define a public constructor with following signature:
 public <class name> (java.util.Properties)

<!ELEMENT custom_data_source (property)+>
<!ATTLIST custom_data_source class CDATA #REQUIRED>

<!ELEMENT property EMPTY>
<!ATTLIST property name CDATA #REQUIRED>
<!ATTLIST property value CDATA #REQUIRED>

The custom_data_source element has single mandatory class attribute:

Attribute Description Required
class The fully qualified class name of the class that implements the DataSource

interface.
Yes

The custom_data_source element can contain any number of property elements. These
name/value pair properties are used to customize the DataSource during object instantiation. Each
property element has two attributes:

Attribute Description Required
name The name of the property to set. Yes

 dbMapper User Guide

 27 of 69

Value The value of the property. Yes

3.3.3 mapping_contexts and mapping_context Elements

The mapping_contexts element lists a set of mapping contexts. This element may contain any
number of mapping_context elements. Each mapping_context element defines a single mapping
context. Each mapping_context element requires a unique id attribute value so that the element may
be uniquely identified among other mapping_context elements defined in the same mapper
configuration file. An application instantiates mappers that use specific mapping contexts by supplying the
id of the desired mapping context in the DBModule.createDefaultMapper method.

<!ELEMENT mapping_contexts (mapping_context)+>

Each mapping_context element represents a mapping context that encapsulates the information needed
by a mapper object to implement relation database persistence for a set of Java classes.

<!ELEMENT mapping_context (or_mapping_files)>
<!ATTLIST mapping_context id CDATA #REQUIRED>
<!ATTLIST mapping_context data_source_id CDATA #REQUIRED>

The mapping_context element defines two mandatory attributes, namely id and
data_source_id. The id attribute uniquely identifies the mapping_context among others defined
in the same mapper configuration file. The data_source_id refers to a data_source element
that must be defined in the data source section of the mapper configuration file.

Attribute Description Required
id The mapping_context identifier. It must be unique. Yes
data_source_id Identifier of the data source associated with this mapping_context. Yes

The mapping_context element contains an element named or_mapping_files. That is described
in the following section.

3.3.3.1 or_mapping_files and or_mapping_file Elements

An or_mapping_files element, which represents a mapping set, is defined by a set of
or_mapping_file elements. Each or_mapping_file element specifies the name of an object-
relational (OR) mapping file. (Refer to the “Creating an Object-relational (OR) Mapping File” section for
details of OR mapping files).

By default, all class mappings of a mapping file specified by an or_mapping_file element are used.
However, a specific subset of the class mappings may be selected by using either an
includes_mapping_set or an excludes_mapping_set element. An includes_mapping_set
element specifies a specific subset of mappings to be used from the file; all others are excluded. An
excludes_mapping_set element is used to exclude specific mappings from the mapping set. Each
mapping in an includes_mapping_set or an excludes_mapping_set element is specified by its
mapping class and mapping tag attributes, which uniquely identify it.

<!ELEMENT or_mapping_files (or_mapping_file)+>
<!ATTLIST or_mapping_file path CDATA #REQUIRED>

<!ELEMENT includes_mapping_set (mapping)+>

 dbMapper User Guide

 28 of 69

<!ELEMENT excludes_mapping_set (mapping)+>

<!ELEMENT mapping EMPTY>
<!ATTLIST mapping class CDATA #REQUIRED>
<!ATTLIST mapping tag CDATA #IMPLIED>

Note that one motivation for defining a mapping set (i.e. an or_mapping_files element) as a set of
files, is to allow different mapping sets to share commons subsets of mappings. This may be done by
putting the mappings to be shared into one or more mapping files, then listing those same files in the
different mapping set definitions.

Finally, note that every mapping set specified by an or_mapping_files element must satisfy the
following two requirements. Otherwise, a run time exception will be thrown by the dbmapper package.

1. A mapping set must not contain multiple mappings for the same Java class. For example, if an

or_mapping_files element specified two different mapping files, each containing a mapping for
the same Java class, the resulting or_mapping_files element would not be valid. As another
example, even if an or_mapping_files element contained a single file that defined two mappings
for the same class (each with a different tag), that would also be an invalid.

2. A mapping set must not contain unresolved mapping class references. For example, an
or_mapping_files element might contain a file that defines a mapping for a complex class,
named SomeClassA, which contains a field of a class SomeClassB. If none of the mapping files
specified in the or_mapping_files element contains a mapping for SomeClassB, then that
or_mapping_files element is invalid.

3.4 Creating a Database Connection File

This section discusses the format, settings, and validation rules of the XML files used by the
BasicDataSource and ConnectionPoolDataSource objects to locate and connect to a JDBC-
capable relational database. These XML files, which are referred to as database connection files, specify
the information necessary to obtain a connection to a database server. A database connection file specifies
the following settings:

Setting Description Required
Name The name of the database connection information. No
engine The persistence engine for the database server. At present, this setting is not used. No
driver The JDBC-driver class name for this data source. The driver is obtained from the

JDBC DriverManager and must be located in the class path.
Yes

url The JDBC URL for this data source of the form
jdbc:subprotocol:subname.

Yes

user_name The username used to log in to the database. Yes
password The password used to log in to the database. Yes

3.4.1 DTD for Database Connection Files

For validation, database connection files should include the “db_connection.dtd” document type
definition (DTD) provided with the dbMapper package. That file is included in the “lib/dbmapper.jar” file
of the dbMapper distribution. The contents of the database connection file DTD is:

 dbMapper User Guide

 29 of 69

<?xml encoding="UTF-8"?>

<!ELEMENT connection_info
((driver,url,user_name,password)|(url,driver,user_name,password))>
<!ATTLIST connection_info name CDATA #IMPLIED >
<!ATTLIST connection_info engine CDATA #IMPLIED >

<!ELEMENT driver (#PCDATA)>

<!ELEMENT url (#PCDATA)>

<!ELEMENT user_name (#PCDATA)>

<!ELEMENT password (#PCDATA)>

3.4.2 Sample Database Connection File

For example, the following file could be used to obtain database connections using an Oracle 8 thin driver,
use:

<?xml version="1.0"?>
<!DOCTYPE connection_info PUBLIC "DBMapper Database Connection"
"http://www.onsd.nec.com/software/db_connection.dtd">

<connection_info name="default" engine="oracle">
 <driver> oracle.jdbc.driver.OracleDriver </driver>
 <url> jdbc:oracle:thin:@myhost:1521:oracle_sid</url>
 <user_name> scott </userName>
 <password> tiger </password>
</connection_info>

3.5 Creating an Object-relational (OR) Mapping File

An object-relational (OR) mapping file, or simply mapping file, is an XML file that specifies the object-
relational mappings for one or more Java classes. This section discusses the file format, settings, and
validation rules of such files. To see how these files are used in mapper configuration files, refer to the
“or_mapping_files and or_mapping_file Elements” section. The DTD for mapping files, which is named
“db_or_mapping.dtd”, is included in the “lib/dbmapper.jar” file of the dbMapper distribution.

An OR mapping file contains a single mappings element. The mappings element consists of a set of
mapping elements. Each mapping element represents a mapping between a Java class and the relational
table that will be used to store object instances of the class. Each mapping element is composed of a
class attribute, a table attribute, an optional pk_class attribute, an optional tag attribute, an
optional dao_class attribute and several field elements. The class attribute specifies the fully
qualified class name of the class that is being mapped, which is sometimes referred to as the mapped class.
The table attribute contains the name of the relational table that will be used to store object instances of
the mapped class. The pk_class attribute specifies the primary key class, if any, for the mapping. The
tag attribute is used to differentiate between two or more mappings defined for the same class. The
dao_class attribute specifies the fully qualified class name of the DAO class tobe used for this mapping.
Each field element represents a Java field of the mapped class and holds the information used to store it
in the database. Each field element is composed of an id attribute, an is_key attribute, an optional
get_method element, and an optional set_method element. The id attribute denotes the ID of the
field being mapped. The value of id can be any string, but must be unique among the other field id

 dbMapper User Guide

 30 of 69

values for the class being mapped. The is_key attribute indicates whether the field is a key field. The
get_method and set_method elements specify the field’s accessor and modifier method names,
respectively (as they appear in the Java code for the mapped class). Additionally, each field element
must contains exactly one of the following elements, which specify the field type: basic_type,
nested_type, complex_type, or complex_collection_type. (Follow the hyperlinks for a
detailed description of these elements.)

3.5.1 mappings and mapping Elements

The mappings element is the root element of an OR mapping file. It can contain any number of
mapping elements.

<!ELEMENT mappings (mapping)+>

The mapping element represents a class mapping and contains all of the information, such as table name,
primary key, mapping tag, Java field mapping, etc., needed to map a Java object to a relational database.
The class that is being mapped is referred to as a mapped class.

The dbMapper package does not create any of the relational tables that are specified in the mapping file. It
is up to the application programmer to make sure that all of the tables specified in the mapping file are
created with the appropriate key relations, indices, and database constraints before the mapping is actually
used for any database operation. This approach was taken to provide maximum flexibility in creating
database schema, and to decouple any database vendor specific dependencies (e.g. schema syntax,
restrictions such as reserved keywords, table name length etc.) from the dbMapper package.

<!ELEMENT mapping (field)+>
<!ATTLIST mapping class CDATA #REQUIRED>
<!ATTLIST mapping table CDATA #REQUIRED>
<!ATTLIST mapping pk_class CDATA #IMPLIED>
<!ATTLIST mapping tag CDATA #IMPLIED>
<!ATTLIST mapping dao_class CDATA #IMPLIED>

A mapping element has five attributes:

Attribute Description Required
class The fully qualified class name of the class that is being mapped. Yes
table The relational table that will be used to store object instances of the mapped class. Yes
pk_class The fully qualified class name of the primary key, if any, for the mapped class.

For more information on primary key class, please refer to the “Primary Key”
section.

No

tag The mapping tag. This attribute is required when multiple mappings are defined
for the same class. The combination of class and tag, which serves as an
identifier for a mapping, must be unique among all mappings used by any single
mapping context.

No

dao_class The fully qualified class name of the DAO class for this mapping. No

Note that the dao_class attribute is optional. If a value is not specified, an instance of the
DefaultDAOImpl class is automatically instantiated and used. Otherwise, the DefaultMapper
instance that uses this mapping will instantiate and use an instance of the specified DAO class. The
specified DAO class must provide one of the following constructors. If both constructors are defined, the
first will be used.

 dbMapper User Guide

 31 of 69

• public MyComplexDAO(DefaultMapper mapper). A public constructor with a single
argument of type DefaultMapper. The mapper argument will contain a reference to the mapper
that is instantiating this DAO instance.

• public MyComplexDAO(). A public constructor with no arguments.

The mapping element contains several field elements that map the Java fields of the mapped class to a
relational table (column, row or set of rows). Only those Java fields that are intended to be stored in the
database should be specified (i.e. any fields of a Java class that are not specified in the mapping are not
persisted by the dbMapper package).

3.5.2 field Element
The field element specifies the mapping between a Java field and the relational table that will store the
field value. Depending on the field type, a field may be stored in a single SQL column, a single table row,
or a set of table rows.

<!ELEMENT field (get_method?,set_method?,
(basic_type|nested_type|collection_type|complex_collection_type))>
<!ATTLIST field id CDATA #REQUIRED>
<!ATTLIST field is_key (true|false) 'false'>

A field element has the following properties:

Attribute/
Element

Description Required

id Specifies the ID of the field that is being mapped. The value of id can be any
string, unique among the other field id values for the class being mapped

Yes

is_key Specifies whether this is a key field for the mapped class. A key field must be of
basic type. By default, it is set to ‘false’.

No

get_method Specifies an accessor method on the mapped class to be used to get the value of
this field.

No

set_method Specifies a modifier method on the mapped class to be used to set the value of
this field.

No

When a get_method or set_method is not specified, the dbMapper package automatically constructs
the names of those accessor and modifier methods (if and when they are needed) using the Sun JavaBean
design pattern (i.e. the pattern where “get” or “set” is prepended to the field ID, with its first letter
capitalized). For example, if a get_method is not specified for a field with an ID “size” of type
MyType, the dbMapper automatically constructs and uses the following accessor method signature:
“public MyType getSize()”. Similarly, the automatically constructed modifier signature would be
“public void setSize(MyType)”. Thus, the get_method and set_method elements need
only be specified when the mapped class does not provide these methods using the Sun JavaBean design
pattern.

3.5.2.1 is_key Attribute

Some (but not all) of the DBInterface operations require the dbMapper to locate a unique database
record that corresponds to the object being operated on. For example, if the update() method is called
on some object, the dbMapper must be able to unambiguously identify the database record that needs to be
updated. For this reason, the dbMapper uses the concept of primary keys and key fields as described in the

 dbMapper User Guide

 32 of 69

“Key Fields and Primary Keys” section. If the field represented by field is a key field, then its is_key
attribute should be set to true. (If a mapping does not have any key fields, then that mapping does not
specify a primary key.) Typically, it makes sense to define the primary key of a mapping to match the
primary key used by the corresponding database table where the objects of the mapped class are stored.

As noted above, only some of the DBInterface operations require that a mapping include a primary
key. Therefore, the specification of a primary key for a mapping is optional. Note however that for those
mappings that do not specify a primary key, the following methods and features are not supported[1]:

• update()
• updateTree()
• deleteByPrimaryKey()
• findAllPrimaryKeys()
• findByPrimaryKey()
• findPrimaryKeysByAttributes()
• findPrimaryKeysByQuery()
• delete()
• complex fields
• complex collection fields

Note 1: If a primary key has more than one key field, then it is referred to as a composite primary key.
Note that in this case, the user must define a primary key class to use those methods of the DBInterface
that include the string “PrimaryKey” in their name. Refer to the “Key Fields and Primary Keys” section for
a definition of “primary key class”.

3.5.2.2 get_method Element

The get_method element specifies the accessor method of the mapped class for this field element.

<!ELEMENT get_method (#PCDATA)>

3.5.2.3 set_method Element

The set_method element specifies the modifier method name of the mapped class for this field
element.

<!ELEMENT set_method (#PCDATA)>

3.5.2.4 Field Type

The dbMapper package provides persistence for four field types: basic, nested, complex, and complex
collection fields. (Refer to the “Field Types” section for details.) This section defines the XML elements
that specify the information needed to support persistence of these field types.

3.5.2.4.1 basic_type Element

The basic_type element contains all of the information needed to map a basic field to the database.
The only information needed by the DefaultMapper class to map this type of field is the name of the
database column used to store it. By default, the DefaultMapper class assumes that the name of the
column is the same as the ID of the field. This default column name can be overridden by specifying the
name of the database column in the column attribute. This information is captured in the DTD in the
following lines:

<!ELEMENT basic_type (#PCDATA)>

 dbMapper User Guide

 33 of 69

<!ATTLIST basic_type column CDATA #IMPLIED>

3.5.2.4.2 nested_type Element

A field is said to be a nested field if it is mapped to a single SQL column of the same database table that
stores the containing object, and the field is nested within another field of the mapped class. Let us have
another look at an example that was used in the “Field Types” section, to introduce some terminology
associated with the nested_type element.

The following example uses the OR mapping between the Person class and the person_table table.
The Person class contains five nested fields, namely address.street, address.city,
address.state, address.zip.zipCode and address.zip.zip4Code:

class Zip {
 int zipCode;
 int zip4Code;
}
class Address {

 String street;
 String city,
 String state;
 Zip zip;
 }

class Person {
 String firstName;
 String lastName;
 int socialSecNum;
 boolean isLiving;
 Address address;
}
create table person_table (
 firstname VARCHAR(64),
 lastname VARCHAR(64),
 ssn INTEGER,
 living CHAR(1),
 street VARCHAR(64),
 city VARCHAR(64),
 state CHAR(2),
 zip INTEGER,
 zip4 INTEGER
)

Notice that the address.zip.zipCode nested field (or simply zipCode nested field) is mapped to
the zip SQL column of person_table. A nested field is described by listing all the intermediate fields
separated by periods (i.e. dots), and finally the target field. This sequence of fields describing a nested field
is called a nested attribute path. The intermediate fields nodes are referred to as intermediate nodes of the
path, and the target field (last element in the path) is called the leaf node. For example, the
address.zip.zipCode nested attribute path contains two intermediate nodes, namely address and
zip, and a zipCode leaf node. The target field (i.e. the leaf node) in a path must be of basic type, so that
it can be mapped to a single SQL column.

The nested_type element contains all of the information needed to map a nested field to the database.

<!ELEMENT nested_type ((intermediate_node)+,leaf_node)>
<!ATTLIST nested_type column CDATA #REQUIRED>

 dbMapper User Guide

 34 of 69

The nested_type element contains a single mandatory column attribute that specifies the database
column to which the nested attribute is being mapped. The nested_type element consists of a series of
intermediate_node elements, terminated by a leaf_node. These node elements capture the nested
attribute path as described above.

<!ELEMENT intermediate_node (get_method?)>
<!ATTLIST intermediate_node node_id CDATA #REQUIRED>
<!ATTLIST intermediate_node class CDATA #REQUIRED>

An intermediate_node of a nested path has three settings, node_id, class, and get_method.
The class attribute specifies the fully qualified class name of intermediate_field. The id
attribute is the ID of intermediate_node. The optional get_method element specifies the accessor
method that is used by the parent class to access the value of this node. If get_method is not specified,
the dbMapper package assumes that the mapped class provides such a method, and that its signature
follows the Sun JavaBean pattern. Refer to the “Field Element” section for a description of the Sun
JavaBean pattern, and an example.

Setting Description Required
node_id The ID of the intermediate node. Yes
class The fully qualified class name of the intermediate field/node. Yes
get_method The accessor method name for this intermediate node. No

<!ELEMENT leaf_node (get_method?,set_method?)>
<!ATTLIST leaf_node node_id CDATA #REQUIRED>
<!-- leaf_node class should be of basic_type -->
<!ATTLIST leaf_node class CDATA #REQUIRED>

A leaf_node element contains all the intermediate_node settings plus an optional set_method
setting. The set_method element specifies the modifier method that is used by the parent object to set
the value of this node. If set_method is not specified, the dbMapper package assumes that the mapped
class provides such a method, and that its signature follows the Sun JavaBean pattern. Refer to the “field
Element” section for a description of the Sun JavaBean pattern, and an example.

Setting Description Required
node_id The ID of the leaf node. Yes
Class The fully qualified class name of the leaf field/node. The class must be one that

corresponds to a basic field type. Refer to the “Basic Field” section for a list of
such types.

Yes

get_method The accessor method name for this leaf node. No
set_method The modifier method name for this leaf node. No

In our example, the dbMapper would simply use the following code to access the
address.zip.zipCode nested field of a Person object (assuming that no custom get or set methods
are specified for these fields):

 person.getAddress().getZip().getZipCode()

If any of the intermediate accessor methods return a null object, the dbMapper acts as if the leaf field
(zipCode) was null.

 dbMapper User Guide

 35 of 69

To modify the address.zip.zipCode nested field in a Person object, the dbMapper would simply
use:

 person.getAddress().getZip().setZipCode(newZip)

Note that the dbMapper package never attempts to instantiate intermediate nodes for a leaf node. For
example, if the DBInterface.create() method is invoked on an object with nested fields whose
intermediate nodes have not been instantiated, the leaf nodes will not be loaded from the database. In fact,
any time that a get method for an intermediate node returns a null value, the attempt to reach the leaf
node is terminated. Thus, it is up to the application programmer to ensure that intermediates nodes are
instantiated, if any operations on leaf nodes are to be executed. Also, note that the dbMapper does not treat
a null return value from a get method as an error. Rather, the processing for the leaf node is simply
considered to be complete, even though the leaf node was never reached.

3.5.2.4.3 complex_type Element

The complex_type element contains the information needed to map a complex field to the database. A
complex_type element consists of one element_mapref element and one key_bindings
element. The element_mapref element specifies the mapping to be used for this complex field. In
other words, the complex field class must be a mapped class itself. The mapping of this mapped class is
used to persist the complex field value to the database. The key_bindings element specifies the
relationship between the key fields of the containing class and the fields of the complex field itself.

<!ELEMENT complex_type (element_mapref,key_bindings)>

Please refer to the “element_mapref Element” and “key_bindings Element” sections for details.

3.5.2.4.4 element_mapref Element

When specifying the mapping for a complex or complex collection field, one must specify the exact
mapping that should be used to persist the field. If only a single mapping exists for the Java class of the
complex field, then it is sufficient to specify only the class attribute to uniquely specify that mapping.
However, if more than one mapping exists, it is necessary to specify both the class and tag attributes to
uniquely identify the mapping.

<!ELEMENT element_mapref EMPTY>
<!ATTLIST element_mapref class CDATA #REQUIRED>
<!ATTLIST element_mapref tag CDATA #IMPLIED>

The element_mapref element has two attributes:

Attribute Description Required
class The fully qualified class name of the field that is being mapped. Yes
tag The mapping tag. This attribute is needed if the desired mapping uses a non-default

tag.
No

3.5.2.4.5 key_bindings Element

The dbMapper assumes that complex fields are not stored in the same table as the containing object.
Because of this assumption, the dbMapper needs enough information to unambiguously correlate complex
field entries (which reside in one table) to their containing objects (which reside in a different table). The

 dbMapper User Guide

 36 of 69

dbMapper maintains this association by requiring that each complex field store the key of its containing
object.

This association between the complex field and its containing class is referred to as a key binding, and is
represented by the key_bindings element. The key_bindings element is composed of multiple
key_binding elements. Each key_binding element associates one fieldsof the containing class,
represented by the parent_field element, with a field of the complex field, represented by the
child_field element. Normally, a key_binding element is specified for each of the key fields of
the containing class. In other words, N key_binding elements would normally be defined for a parent
class with a composite key consisting of N fields.

<!ELEMENT key_bindings (key_binding)+>

<!ELEMENT key_binding EMPTY>
<!ATTLIST key_binding parent_field CDATA #REQUIRED>
<!ATTLIST key_binding child_field CDATA #REQUIRED>

As an example, consider a Person class that contains a complex field, house, of the type House.
Assume that the Person class has a basic field called, name, which is its key. Also, assume that the
House class has a basic field (of the same type) called owner. The owner field is used to store the name
value of the containing Person object. In this case, the dbMapper package must know that the owner
field of the House class corresponds to the name field of the Person class. This type of information is
captured in the key_bindings element. For this example, the House class would define a single
key_binding, with name as the value of the parent_field element, and owner as the value of the
child_field element.

3.5.2.4.6 complex_collection_type Element

The complex_collection_type element contains the information needed to map a complex
collection field to a relational database.

<!ELEMENT complex_collection_type
((element_mapref,container_class,key_bindings)
|(container_class,element_mapref,key_bindings))>

The complex_collection_type element is composed of one element_mapref element, one
container_class element, and one key_bindings element.

The element_mapref element specifies the OR mapping that is used to persists the elements of the
array or collection to the database. Please refer to “element_mapref Element” section for details.
The container_class element specifies the collection type.

<!ELEMENT container_class (#PCDATA)>

If the fields are stored in an array, the dbMapper expects the following signature for container_class:

 <fully qualified class name of the array elements> [].

Note that the class name will be the same as that used for the element_class element, and that the
value ends with "[]".

The following example shows how the container class for an array of mypkg.MyClass objects would be
specified:

 dbMapper User Guide

 37 of 69

<container_class> mypkg.MyClass[] </ container_class>

When the complex collection field uses a collection type (instead of an array), the container_class
must specify the fully qualified class name of the container class that is used. The dbMapper expects the
container class to implement the java.util.Collection interface and to provide a public default
constructor (i.e. a constructor with no arguments). The following example shows how the container class
would be specified for a complex collection field that uses the java.util.ArrayList class as the
container.

<container_class> java.util.ArrayList </container_class>

The complex_collection_type element defines a key_bindings element to specify the
relationship between the entries stored in the collection/array and the key fields of the containing class.
Please refer to the “key_bindings Element” section for details.

3.5.3 Primary Key Class

Although the dbMapper does not mandate that an OR mapping define a primary key class, in some cases it
may be desirable. As the primary key represents the identity of a persistent user object, a client application
may save this data elsewhere, e.g. in memory or in a file, so that the key may later be used to obtain the
user object from the database. The primary key can also be useful in cases when a user object contains
many attributes and requires a large amount of memory. In this case, it may make sense for the application
to maintain a collection of keys, rather than a collection of the entire object instances. Specific object
instances can then be retrieved, as needed, using the keys in the collection.

Note that a class mapping must be provided for any primary key class that is used by the dbMapper
package.

4 Developing With dbMapper

To use dbMapper, you will need access to a relational database server and Java class libraries that include a
JDBC 2.0 compliant driver class. The examples provided with the dbMapper distribution have been tested
with a variety of JDBC-capable RDBMS products, such as Oracle 8.0 and 8i (http://www.oracle.com/),
MySQL 3.23.39 (http://www.mysql.com/), PostGres 7.2.2 (http://www.postgresql.org/), HyperSonic
Database 1.7.1(http://hsqldb.sourceforge.net/).

The dbMapper distribution includes all of the files needed to run the examples, including database schema
files that may be used to create the relation tables required to run the examples. Those files are located in
the sql directory. A sample database connection file is also provided for Oracle, MySQL, PostGres and
HyperSonic database products. These file are used to locate and connect to database servers. You should
edit one of these files, or create a new one to reflect the settings of the particular relational database server
that you plan to use. The dbMapper distribution also includes the mapper configuration and OR mapping
files used in the examples.

The database connection file used in the following examples uses the Oracle 8i thin driver class provided
by Oracle. However, the examples may be run with any RDBMS product that comes with a JDBC 2.0
complaint drive, provided that the database connection file is modified accordingly, and the schema file is
modified, if needed, to support any vendor-specific syntax. Before running any of the examples, first make
sure the following system requirements are met:

4.1 System Requirements
To use dbMapper, you must add the following libraries to your CLASSPATH.

 dbMapper User Guide

 38 of 69

Jar Name Needed For Available At
Included
with the
distribution?

src.jar,
tools.jar JDK 1.3 or later http://java.sun.com/ No

dbmapper.jar The dbMapper library with the distribution Yes

log4j.jar
apache log4j classes (1.1.3 or
later) used by dbmapper.jar

http://jakarta.apache.or
g/log4j/

Yes

xerces.jar Xerces XML parser (1.4.3 or later) http://xml.apache.org/x
erces/

Yes

jdom.jar jdom 1.0 or later, parse OR
mapping XML file http://jdom.org/ Yes

JDBC driver
library provided by
database vendor

database tasks (Ex: Oracle drivers
http://www.oracle.com)

No

The binary distribution of dbMapper includes all the jar files except the database vendor JDBC driver
libraries. Refer to your database product manuals to locate the JDBC library (with .jar or .zip
extension). For example the Oracle JDBC library, can be located at:

 $ORACLE_HOME/jdbc/lib/classes12.zip (Unix) OR
 %ORACLE_HOME%\jdbc\lib\classes12.zip (Windows).

where ORACLE_HOME is the directory where the Oracle server or client is installed.

4.2 Installation Tasks
The dbMapper distribution includes a number of examples that are easy to run, and demonstrate major
features of dbMapper package. You can review the Java source files of the examples to see how they work.

Before running any of the examples, please finish the following tasks:

1. Set up your classpath (see “System Requirements” section). Make sure ‘.’ (current directory)
is in your classpath.

2. Make sure the JDK is in your path. Set the JAVA_HOME environment variable to the directory
where the JDK is installed. Go to the JDK installation page
(http://java.sun.com/j2se/1.3/install.html) and follow the directions for your platform.

3. Locate the JDBC library (with .jar or .zip extension) for your RDBMS vendor. Add this to
your classpath.

Some additional tasks need to be completed before the examples can be run. Refer to the “Running the
Examples” section for details.

4.3 Building the dbMapper Package
This section provides a reference to the build options that are provided with the dbMapper package.
However, note that unless the Java source code files are modified, there is no need to run any build
commands, as the dbMapper distribution itself includes compiled code and javadoc for all classes.
However, you will need to compile the examples, if you wish to run them. Refer to the next section for
instructions.

 dbMapper User Guide

 39 of 69

Before attempting any of the build commands, be sure to first finish the installation tasks of the previous
section. When finished, go to the root directory of dbMapper distribution.

To build the dbMapper package you must have Ant 1.2 or later installed. You can download the latest
version of Ant from http://jakarta.apache.org/builds/ant. Make sure that Ant is in your path. Also, set
the ANT_HOME environment variable. This should be set to the directory where Ant is installed.

To build the entire dbMapper distribution (library jar files and javadoc API documentation), simply type
 ant
To build only the dbMapper library jar files, use
 ant lib
To build only the javadoc API documentation, use
 ant javadoc
To remove all class files, including those in the original distribution, use
 ant clean

4.4 dbMapper Examples

The dbMapper distribution includes a set of examples that demonstrate various capabilities of the
dbMapper package. Each example is contained in a subdirectory of the “examples” directory. This section
describes the organization of the examples, and how to run them. Note that each example provides both
“bat” files and “sh” files, so that the examples can be run in Windows and Unix environments. This
document assumes that the user is working in the Windows environment, and so will refer to the “bat” files
only.

4.4.1 Running the Examples

This section describes how to run the examples. Before running them, you will first need to set up your
environment properly, and compile them. The following subsections provide instructions to do this. Note
that the last example, which is an EJB example, is organized slightly differently. Refer to the EJB example
section for details.

4.4.1.1 Setting Up Your Environment

Before running the examples, it is necessary to set some environment variables. To do this, first open up
the myenv.bat file located in the root directory of the dbMapper distribution. Examine the various
settings, and adjust them as needed for your configuration. After saving your editing changes, run
myenv.bat. This will give you the environment needed to run the examples.

4.4.1.2 Example Directory Structure

Each example has its own directory under the examples directory. The name of the example directory
gives some indication of the principles that the example demonstrates. Each example directory contains the
following subdirectories:

• src – the source code for the example.
• classes - the compiled class files for the source files in “src”
• data - the XML data files needed for the example

4.4.1.3 Compiling an Example

 dbMapper User Guide

 40 of 69

To compile an example, simply run the compile.bat script in the example directory. The compiled
“class” files will be written to the classes directory.

4.4.1.4 Running an Example

Before running an example, you must take care of two more things. First, you must create the tables
needed by the examples. To do this, use the create.sql schema file in the sql directory.

Secondly, you must modify the data/db_connection.xml file of the example to match your
database settings. The files included with the distribution contain settings for an Oracle database. If you
are using a different database product, you must modify data/db_connection.xml to use the settings
for that database product. Examples for several database products are provided in the subdirectories of the
sql directory. Also, if you plan to use the same database and database user for all of the examples, you
may want to copy the modified connection file that you create to the data directories of the other
examples, as well.

If your database is up and running, you can now run the example by executing the run.bat script. The
output that is written to your terminal is also written to the dbdemo.log file.

4.4.2 Example1 – DataSources

In this example, we demonstrate how to create and configure the different types of data sources provided
by the dbMapper package. If you have not done so already, please first read the “data_sources and
data_source Element” section. Later in this example, we will also create and use a custom implementation
of the DataSource interface.

Before using any of the dbMapper classes, the dbMapper package should first be initialized by invoking the
static init(String mapperConfigFile) method of the DBModule singleton class. The
init method takes a mapper configuration file as the only argument. The following code snippet is taken
from the Test.java file (in the examples\ex01-datasources\src directory):

 DBModule dbm = DBModule.init (mapperFile); // mapperFile is set to
data/dbmapper.xml file path

Before proceeding any further, let us first look at the content of the dbmapper.xml file:

<?xml version="1.0"?>
<!DOCTYPE root PUBLIC "DBMapper Config" "http://www.onsd.nec.com/software/dbmapper.dtd">
<root>

The first line is simply an XML prolog or header statement that indicates that our document uses version
1.0 of XML. The second line in above snippet indicates that the XML document is validated using the
“dbmapper.dtd” DTD file and “root” is the root element of our document.

<data_sources>

 <!-- basic connection manager with no maximum bound on connections -->
 <data_source id="ds_basic">
 <basic_data_source
 connection_info_file="data/db_connection.xml"
 />
 </data_source>

 dbMapper User Guide

 41 of 69

All the data sources managed by the singelton DBModule object are defined within the
<data_sources> </data_sources> XML tags. The last five lines in the above snippet define a
BasicDataSource object, named ds_basic, that has no upper bound on the number of connections
held open by this data source at any given time.

 <!-- connection pool -->
 <data_source id="ds_pool">
 <connection_pool
 connection_info_file="data/db_connection.xml"
 initial_capacity="0"
 />
 </data_source>

The above creates an infinitely growing ConnectionPoolDataSource identified by ds_pool. The
ds_basic data source provides a single database connection, while the ds_pool data source provides a
pool of connections, which may be useful for a multi-threaded application.

 <!-- custom datasource : you can modify this entry according to your
 DataSource settings (class, jdbc information..)
 -->
 <data_source id="ds_custom">
 <custom_data_source class="MyDataSource">
.................................
 </custom_data_source>
 </data_source>

The above defines a custom (user-defined) implementation of the DataSource interface, identified by
ds_custom. The XML settings and DataSource implementation are discussed in detail at the end of
this section.

</data_sources>

<mapping_contexts>

 <mapping_context id="custom" data_source_id="ds_custom">
 <or_mapping_files>
 <or_mapping_file path="data/or_mapping.xml"/>
 </or_mapping_files>
 </mapping_context>

 <mapping_context id="basic" data_source_id="ds_basic">
 <or_mapping_files>
 <or_mapping_file path="data/or_mapping.xml"/>
 </or_mapping_files>
 </mapping_context>

 <mapping_context id="pool" data_source_id="ds_pool">
 <or_mapping_files>
 <or_mapping_file path="data/or_mapping.xml"/>
 </or_mapping_files>
 </mapping_context>

</mapping_contexts>

The first line in the above document fragment marks the end of the data source declarations. All of the
mapping contexts managed by the singelton DBModule object are defined within the
<mapping_contexts> </mapping_contexts> tags. The next few lines declare three mapping
contexts, namely custom, basic and pool. Each of these mapping contexts specify a data source
(defined within the <data_sources>..</data_sources> tags) and a mapping set (as defined by a
set of mapping files). For example, the “pool” mapping context is created by specifying the “ds_pool”
data source and the mapping set specified by the single mapping file named “or_mapping.xml”.

 dbMapper User Guide

 42 of 69

(Mapping sets and the mapping files that define them are discussed in detail in the next example(s). In this
example we will only concentrate on the data sources.)

</root>

The above line marks the end of the mapper configuration file.

Now lets get back to the rest of the code in Test.java. The next few lines show how to create a mapper
by specifying the mapping context identifiers defined in the mapper configuration file.

 DBInterface poolDBIf = dbm.createDefaultMapper ("pool");
 DBInterface basicDBIf = dbm.createDefaultMapper ("basic");
 DBInterface customDBIf = dbm.createDefaultMapper ("custom");

The following code fragment performs a very basic test on these three mappers. For each mapper, the code
simply attempts to establish then release four database connections. This process is repeated one hundred
times in a loop. Upon invocation of the getConnection/releaseConnection methods, the
mapper simply returns the result of the getConnection/releaseConnection invocation on the
underlying DataSource object.

 testDBIf (poolDBIf, "pool");
 testDBIf (basicDBIf, "basic");
 testDBIf (customDBIf, "custom");
 }
 void testDBIf (DBInterface dbIf, String ifName) throws Exception {
 DBConnection[] connections = new DBConnection[4];
 long startTime = System.currentTimeMillis();
 for (int i=0; i < 100; i++) {
 for (int j=0; j < connections.length; j++) {
 connections[j] = dbIf.getConnection();
 }
 for (int j=0; j < connections.length; j++) {
 dbIf.releaseConnection (connections[j]);
 }
 }
 Logger.debug ("ifName[" + ifName + "] time in ms = "
 + (System.currentTimeMillis()-startTime));
 }

After executing this example program, one can verify from the messages in the output log that the database
resources are most efficiently managed by the ConnectionPoolDataSource data source, which
represents a pool of database connections.

Now let us look at the custom data source declared in the mapper configuration file:

 <data_source id="ds_custom">
 <custom_data_source class="MyDataSource">
 <property name="driver" value="oracle.jdbc.driver.OracleDriver"/>
 <property name="url"
value="jdbc:oracle:thin:@myhost.mydomain.com:1521:oracle_sid"/>
 <property name="user" value="scott"/>
 <property name="password" value="tiger"/>
 </custom_data_source>
 </data_source>

The dbMapper requires that the data source class, MyDataSource, implement all methods of the
DataSource interface. The data source class is also expected to provide a public constructor that takes a
single input argument of type java.util.Properties. When creating the custom data source object,
dbMapper (i.e. the DBModule object) will use:

 java.util.Properties props = new java.util.Properties();

 dbMapper User Guide

 43 of 69

 props.setProperty (“driver”, “oracle.jdbc.driver.OracleDriver”);
 props.setProperty (“url”,
 "jdbc:oracle:thin:@myhost.mydomain.com:1521:oracle_sid");
 props.setProperty (“user”, “scott”);
 props.setProperty (“password”, “tiger”);
 DataSource ds = new MyDataSource (props);

The content of the custom data source class MyDataSource follows:

...... // Import statements
public class MyDataSource implements DataSource {
 java.util.Properties connectionArgs = null;

 public MyDataSource (java.util.Properties props) throws Exception {
 String jdbcDriverClassName = props.getProperty ("driver");
 connectionArgs = props;
 // Load the JDBC driver
 Class.forName (jdbcDriverClassName);
 }

 /*********** Implementation of DataSource methods ************/
 // Returns a new JDBC connection wrapped inside DBConnection.
 public DBConnection getConnection() {
 DBConnection dc = null;
 String jdbcURL = connectionArgs.getProperty ("url");
 try {
 java.sql.Connection conn = DriverManager.getConnection (jdbcURL,
 connectionArgs);
 dc = new DBConnectionImpl (conn);
 }
 catch (Exception e) {
 Logger.error ("Error creating connection. Details: ", e);
 }
 return dc;
 }

 //Release an previously opened DBConnection.
 public void releaseConnection (DBConnection conn) {
 ((DBConnectionImpl) conn).destroy();
 }

}

4.4.3 Example2 – Basic Type

This example uses a very simple class named Primitive.java, which has two basic fields, to
demonstrate step by step, the simplicity of using the dbMapper package. Lets first look at
Primitive.java:

public class Primitive {
 int x; // Primary key attribute
 String y;

 // The no-argument constructor, required by dbMapper
 public Primitive() { x = 0; y = null; }

 public Primitive(int _x, String _y) { x = _x; y = _y; }

 // Accessor methods
 public int getX() { return x; }
 public String getY() { return y; }
 // Modifier methods
 public void setX(int _x) { x = _x; }
 public void setY(String _y) { y = _y; }

}

 dbMapper User Guide

 44 of 69

Primitive objects are persisted in the demo_primitive table, whose schema is defined by the
“create.sql” file (located in the samples directory):

create table demo_primitive (
 col_x INTEGER PRIMARY KEY,
 col_y VARCHAR(64)
)

The demo_primitive table defines two columns, named col_x and col_y, to store the x and y fields
respectively. A primary key (composed of single column, col_x) is created on the table to emphasize that
x is a key field, i.e. a Primitive object can be located in database by specifying the value of the field x.

The mapping file (located in examples/ex02-basic_fields/data directory) specifies that the
demo_primitive table is to be used to store instances of the Primitive.java class:

<?xml version="1.0"?>
<!DOCTYPE mappings PUBLIC "DBMapper OR Mapping"
"http://www.onsd.nec.com/software/db_or_mapping.dtd">
<!-- Set DTD validation file -->

<mappings>

<!-- Bind Primitive class to demo_primitive table -->
<mapping class = "Primitive"
 table="demo_primitive" >
 <!-- bind java int x to sql column col_x:int (indicate x as key
 attribute -->
 <field id="x" is_key="true" >
 <basic_type column="col_x">int</basic_type>
 </field>
 <!-- bind java String y to sql column col_y:varcahr2(64)-->
 <field id="y">
 <basic_type column="col_y">String</basic_type>
 </field>
</mapping>
</mappings>

Since the Primitive mapping has only one key field, x, the java.lang.Integer class (i.e. the
wrapper class for the primitive int type) can be used as the primary key for this mapping (see the “Key
Fields and Primary Key” section). Also note that the default column name for the field x is overridden by
col_x using the column attribute, as described in the “basic type Element” section. (Similarly, the
default column name for y is overridden by col_y.)

The following code snippet shows how Primitive object instances are created, deleted, modified, and
located in the demo_primitive table. First, the main method instantiates a Test object by passing a
mapper configuration file as the only argument. This file is used to initialize the DBModule class and to
create a mapper object (as described in the previous example). Next, the test() method of the Test
class is invoked to execute the example code.

public class Test {
 DBInterface mapper; // mapper used for this test

 Test (String mapperFile) {
 // create the mapper to be used for this test
 try {
 DBModule dbm = DBModule.init (mapperFile);
 mapper = dbm.createDefaultMapper ("default");
 Logger.debug (mapper.toString());
 }
 catch (Exception e) {
 Logger.error ("Error details: ", e);
 System.exit(0);
 }

 dbMapper User Guide

 45 of 69

 this.mapper = mapper;
 }

 public static void main (String[] args) {
 try {
 String mapperFile = args[0];
 Test testSuite = new Test(mapperFile);
 testSuite.test();
 }
 catch (Exception e) {
 Logger.error ("Error details: ", e);
 }
 }

 void test() throws Exception {
 AttrValMap aValMap = null;
 HashMap hValMap = null;

 // Delete older entries
 mapper.deleteAll (Primitive.class);

 // Create a Primitive object and persist it to database
 Primitive o1 = new Primitive(3, "test");
 mapper.create (o1);
 Logger.debug ("create(Object) :: Object " + o1
 + " is successfully created.");

 // Delete the o1 Primitive object created above
 mapper.delete (o1);
 Logger.debug ("delete(Object) :: Object " + o1
 + " is successfully deleted.");

 // Create o1 again and then delete it using primay key
 mapper.create (o1);
 mapper.deleteByPrimaryKey (new Integer(3), Primitive.class);
 Logger.debug ("delete(pk,cls) :: Object " + o1
 + " is successfully deleted.");

 // Create o1 again. Delete all the Primitive objects with x equal
 // to 3 (deletes o1 from database)
 mapper.create (o1);
 aValMap = new AttrValMap();
 aValMap.put ("x", 3);
 mapper.deleteByAttributes (aValMap, Primitive.class);
 Logger.debug ("deleteByAttributes(aval,cls) :: Object " + o1
 + " is successfully deleted.");

 // Create o1 again. Update o1 attributes and update new changes
 // to database
 mapper.create (o1);
 Logger.debug ("create(Object) :: Object " + o1
 + " is successfully created.");
 o1.setY ("New Value");
 mapper.update(o1);
 Logger.debug ("update(Object) :: Object " + o1
 + " is successfully updated.");

 // Update selected o1 attributes to database (using AttrValMap)
 aValMap = new AttrValMap();
 aValMap.put ("y", "AttrVal update");
 mapper.update(o1, aValMap, true);
 Logger.debug ("update(Object,aval,bool) :: Object " + o1
 + " is successfully updated.");

 // Update selected o1 attributes to database (using HashMap)
 hValMap = new HashMap(1);
 hValMap.put ("y", "HashMap update");
 mapper.update(o1, hValMap, true);
 Logger.debug ("update(Object,hval,bool) :: Object " + o1
 + " is successfully updated.");

 dbMapper User Guide

 46 of 69

 // Create few more Primitive objects and persist them to database
 Primitive o2 = new Primitive(6, null);
 mapper.create (o2);
 Primitive o3 = new Primitive(36, "Welcome !");
 mapper.create (o3);
 Primitive o4 = new Primitive(36*6, "Hi");
 mapper.create (o4);

 // Locate an previously created Primitive object in database using
 // primary key
 Primitive retVal = (Primitive) mapper.findByPrimaryKey (
 new Integer(36), Primitive.class); // should return o3
 Logger.debug ("findByPrimaryKey(pk,class) :: Object " + retVal
 + " is successfully found.");

 // Locate an previously created Primitive object in database by
 // specifying key attribute x
 aValMap = new AttrValMap();
 aValMap.put ("x", 36*6);
 Collection c1 = mapper.findByAttributes (aValMap, Primitive.class);
 // c1 should contain only o4
 Logger.debug ("findByAttributes(aval,class) :: Collection "
 + c1.toString() + " is successfully found.");

 // Find all the Primitive object in database with null y (non-key
 // attribute)
 aValMap = new AttrValMap();
 aValMap.put ("y", null);
 Collection c2 = mapper.findByAttributes (aValMap, Primitive.class);
 // c2 hould contain only o2
 Logger.debug ("findByAttributes(aval,class) :: Collection "
 + c2.toString() + " is successfully found.");

 // Find Primitive objects based on a custom SQL query
 Collection c3 = mapper.findByQuery (
 "SELECT * from demo_primitive where col_x >= 36 order by col_x",
 Primitive.class);
 Logger.debug ("findByQuery(query,class) :: Collection "
 + c3.toString() + " is successfully found.");

 // Find all the Primitive objects stored in demo_primitive table
 Collection c4 = mapper.findAll (Primitive.class);
 Logger.debug ("findAll(class) :: Collection " + c4.toString()
 + " is successfully found.");

 // Find a primary key object based on non-key attribute y.
 // And then delete the corresponding object from database.
 aValMap = new AttrValMap();
 aValMap.put ("y", "Hi");
 Collection c5 = mapper.findPrimaryKeysByAttributes (
 aValMap, Primitive.class);
 // Above method should return o4. Remove it
 Logger.debug ("findPrimaryKeysByAttributes(aval,class) :: Collection "
 + c5.toString() + " is successfully found.");
 Object akey = c5.iterator().next();
 mapper.deleteByPrimaryKey (akey, Primitive.class);

 // Find primary key objects based on a custom SQL query
 Collection c6 = mapper.findPrimaryKeysByQuery (
 "SELECT col_x from demo_primitive where col_y IS NOT NULL",
 Primitive.class);
 Logger.debug ("findPrimaryKeysByQuery(query,class) :: Collection "
 + c6.toString() + " is successfully found.");

 // Find primary key of all the Primitive objects stored in
 // demo_primitive table
 Collection c7 = mapper.findAllPrimaryKeys (Primitive.class);
 Logger.debug ("findAllPrimaryKeys(class) :: Collection "
 + c7.toString() + " is successfully found.");

 // Add "36*6" back.

 dbMapper User Guide

 47 of 69

 mapper.create (o4);
 Collection c8 = mapper.findAll (Primitive.class);
 Logger.debug ("findAll(class) :: Collection " + c8.toString()
 + " is successfully found.");
 }
}

4.4.4 Example3 – User Class (User-defined Primary Key Class and Basic Types)
This example uses a class named User to illustrate the use of a user-defined primary key class and the
basic types supported by the dbMapper. The User class declares several basic fields, and instances of the
User class are mapped to the demo_user database table. The demo_user table’s primary key is a
composite key of the firstName, lastName, and pin columns.

public class User {
 // Primary key attribute
 String firstName;
 String lastName;
 long pin;

 // other attributes
 char sex;
 double height;
 String email;
 boolean alive;
 Integer income;
 Short dob;

 // The no-argument constructor, required by dbMapper
 public User() { }
 // Other constructors

 // Getter/Setter methods for the attributes

}

The User class attributes are mapped to the demo_user table columns as shown in the following SQL
statement:

create table demo_user (
 firstName VARCHAR(64) NOT NULL,
 lastName VARCHAR(64) NOT NULL,
 pin INTEGER NOT NULL,
 sex VARCHAR(1),
 height FLOAT,
 email VARCHAR(64),
 alive CHAR(1),
 income INTEGER,
 dob SMALLINT,
 CONSTRAINT demo_user_pk PRIMARY KEY (firstName, lastName, pin)
);

The last line defines the composite primary key on the demo_user table. The primary key columns
should be defined as key fields of the mapping between the User class and the demo_user table. The
column SQL types are mapped to Java types as suggested by Oracle. If you are using a different RDBMS
product, please refer to the vendor documentation for Java-SQL type mapping details.

Let us look at the primary key class, UserPK:

public class UserPK {
 // Define all key attribute ouf User class
 String firstName;
 String lastName;
 long pin;

 dbMapper User Guide

 48 of 69

 // The no-argument constructor, required by dbMapper
 public UserPK() { }
 // Other constructors

 // Getter/Setter methods for the attributes

}

Note that UserPK looks like a stripped version of the User class. The only fields that remain are those
that compose the primary key. For the user-defined primary key classes, the dbMapper package
recommends that the user override the equals and hashCode methods of the java.lang.Object
super class.

The examples/ex03-primary_key_class/data/or_mapping.xml file defines the mapping
between the User class and the demo_user table:

<?xml version="1.0"?>
<!DOCTYPE mappings PUBLIC "DBMapper OR Mapping"
"http://www.onsd.nec.com/software/db_or_mapping.dtd">

<mappings>

<!-- Bind User class to demo_user table. Define primary key class -->
<mapping class = "User"
 table="demo_user"
 pk_class = "UserPK"
 >
 <!-- bind java String firstName/lastName to sql column
 firstName/lastName (indicate as key attribute -->
 <field id="firstName" is_key="true" >
 <basic_type>String</basic_type>
 </field>
 <field id="lastName" is_key="true" >
 <basic_type>String</basic_type>
 </field>
 <!-- bind java long pin to sql column pin:int (indicate as key
 attribute -->
 <field id="pin" is_key="true" >
 <basic_type>long</basic_type>
 </field>

 <!-- define non-key attributes -->
 <field id="sex" is_key="false" >
 <basic_type> char </basic_type>
 </field>
 <field id="height" is_key="false" >
 <basic_type> double </basic_type>
 </field>
 <field id="email" is_key="false" >
 <basic_type> String </basic_type>
 </field>
 <field id="alive" is_key="false" >
 <basic_type> boolean </basic_type>
 </field>
 <field id="income" is_key="false" >
 <basic_type> Integer </basic_type>
 </field>
 <field id="dob" is_key="false" >
 <basic_type> Short </basic_type>
 </field>
</mapping>

</mappings>

We are all set. Let us go through the example code to see how User objects can be created, deleted,
modified, and located in the database and how to make use of the UserPK primary key class.

 dbMapper User Guide

 49 of 69

public class Test {
 DBInterface mapper; // mapper used for this test

 Test (String mapperFile) {
 // create mapper to be used for this test

 }
 public static void main (String[] args) {
 try {
 String mapperFile = args[0];
 Test testSuite = new Test(mapperFile);
 testSuite.test();
 }
 catch (Exception e) {
 Logger.error ("Error details: ", e);
 }
 }

 public void test() throws Exception {
 AttrValMap aValMap = null;
 HashMap hValMap = null;

 // Delete older entries
 mapper.deleteAll (User.class);

 // Create a User object and persist it to database
 User usr1 = new User ("Charles", "Smith", 13452,
 'M', 170.34, "csmith@mailcity.com",
 true, new Integer(55000), new Short((short)15));
 mapper.create (usr1);
 Logger.debug ("create(Object) :: Object " + usr1
 + " is successfully created.");

 // Now delete the user created above using primay key
 UserPK usr1PK = new UserPK("Charles", "Smith", 13452);
 mapper.deleteByPrimaryKey (usr1PK, User.class);
 Logger.debug ("delete(Object) :: Object " + usr1
 + " is successfully deleted.");

 // Create usr1 again. Delete all the User objects with last name "Smith"
 // i.e. (deletes usr1 from database)
 mapper.create (usr1);
 Logger.debug ("create(Object) :: Object " + usr1
 + " is successfully created.");
 aValMap = new AttrValMap();
 aValMap.put ("lastName", "Smith");
 mapper.deleteByAttributes (aValMap, User.class);
 Logger.debug ("deleteByAttributes(aval,cls) :: Object " + usr1
 + " is successfully deleted.");

 // Create the usr1 again. Update usr1 attributes and update new changes
 // to database
 mapper.create (usr1);
 Logger.debug ("create(Object) :: Object " + usr1
 + " is successfully created.");
 usr1.setDob (new Short((short) 18));
 usr1.setEmail (null);
 usr1.setIncome (null);
 mapper.update(usr1);
 Logger.debug ("update(Object) :: Object " + usr1
 + " is successfully updated.");

 // Update selected attributes (using AttrValMap)
 // of usr1 and update these new changes to database
 aValMap = new AttrValMap();
 aValMap.put ("dob", new Short((short) 12));
 aValMap.put ("income", new Integer(67759));
 aValMap.put ("email", null);
 mapper.update(usr1, aValMap, true);
 Logger.debug ("update(Object,aval,bool) :: Object " + usr1
 + " is successfully updated.");

 dbMapper User Guide

 50 of 69

 // Update selected attributes (using HashMap) of usr1 and update
 // these new changes to database
 hValMap = new HashMap(1);
 hValMap.put ("income", new Integer(23234));
 hValMap.put ("dob", new Short((short)30));
 hValMap.put ("email", "smith@hotmail.com");
 mapper.update(usr1, hValMap, true);
 Logger.debug ("update(Object,hval,bool) :: Object " + usr1
 + " is successfully updated.");

 // Create few more users
 User usr2 = new User ("Goldy", "Smith", 786, 'F', -1,
 null, false, new Integer(1000000),
 new Short((short)24));
 mapper.create (usr2);
 User usr3 = new User ("Kate", "Winslet", 1234, 'F', 168.23,
 "katie@hollywood.com", true, new Integer(999699),
 new Short((short)12));
 mapper.create (usr3);
 User usr4 = new User ("Princess", "Diana", 666, 'F', 178,
 "diana@celebs.com", false, new Integer(666978),
 new Short((short)6));
 mapper.create (usr4);

 // Locate an previously created user in database using primary key
 UserPK usr2PK = new UserPK ("Goldy", "Smith", 786);
 User usr2dup = (User) mapper.findByPrimaryKey (
 usr2PK, User.class); // Should return usr2
 Logger.debug ("findByPrimaryKey(pk,class) :: Object " + usr2dup
 + " is successfully found.");

 // Locate an previously created user in database using key attribues
 aValMap = new AttrValMap();
 aValMap.put ("firstName", "Princess");
 aValMap.put ("lastName", "Diana");
 aValMap.put ("pin", 666);
 Collection c1 = mapper.findByAttributes (aValMap, User.class);
 // c1 should contain only usr4
 Logger.debug ("findByAttributes(aval,class) :: Collection "
 + c1.toString() + " is successfully found.");

 // Find all the alive females from database
 aValMap = new AttrValMap();
 aValMap.put ("sex", 'F');
 aValMap.put ("alive", true);
 Collection c2 = mapper.findPrimaryKeysByAttributes (aValMap,
 User.class);
 Logger.debug ("findByAttributes(aval,class) :: Collection "
 + c2.toString() + " is successfully found.");
 // Collection c2 should only contain primary object pointing to usr3.
 // Use the primary key to delete this entry from database
 Object akey = c2.iterator().next();
 mapper.deleteByPrimaryKey (akey, User.class);
 Logger.debug ("deleteByPrimaryKey(key,class) :: Object " + akey
 + " is successfully deleted.");

 // Find User objects based on a custom SQL query
 Collection c3 = mapper.findByQuery (
 "SELECT * from demo_user where lastName='Smith'",
 User.class);
 Logger.debug ("findByQuery(query,class) :: Collection " + c3.toString()
 + " is successfully found.");

 // Find all the User objects stored in demo_user table
 Collection c4 = mapper.findAll (User.class);
 Logger.debug ("findAll(class) :: Collection " + c4.toString()
 + " is successfully found.");

 // Find a primary key object based on non-key attribute sex.
 // (find all men from database)

 dbMapper User Guide

 51 of 69

 aValMap = new AttrValMap();
 aValMap.put ("sex", 'M');
 Collection c5 = mapper.findPrimaryKeysByAttributes (
 aValMap, User.class);
 Logger.debug ("findPrimaryKeysByAttributes(aval,class) :: Collection "
 + c5.toString() + " is successfully found.");

 // Find primary key objects based on a custom SQL query
 Collection c6 = mapper.findPrimaryKeysByQuery (
 "SELECT pin, lastName, firstName FROM demo_user WHERE lastName"
 + " like 'Sm%' ORDER by firstName, lastName, pin",
 User.class);
 Logger.debug ("findPrimaryKeysByQuery(query,class) :: Collection "
 + c6.toString() + " is successfully found.");

 // Find primary key of all the User objects stored in
 // demo_user table
 Collection c7 = mapper.findAllPrimaryKeys (User.class);
 Logger.debug ("findAllPrimaryKeys(class) :: Collection "
 + c7.toString() + " is successfully found.");

 // Add usr3 ("Kate Winslet") back.
 mapper.create (usr3);
 Collection c8 = mapper.findAll (User.class);
 Logger.debug ("findAll(class) :: Collection " + c8.toString()
 + " is successfully found.");
 }
}

4.4.5 Example4 – Transaction
This example demonstrates management of transaction boundaries across a set of DBInterface method
invocations. We are going to use the Primitive class and the mapping defined in the “Example2 –
Basic Type” section.

The first part of the following code snippet creates a new transaction for the current thread (by invoking the
beginTransaction() method), performs some successful database operations, and finally terminates
the transaction by committing all the database changes that were made (using the
commitTransaction() method).

The second part of the example code creates a new transaction for the current thread, then performs some
valid database operations followed by an error-prone operation (i.e. a database constraint violation). As a
result of the bad operation, an exception is thrown by the dbMapper package and the code rolls back all of
the database changes that had been made within the transaction.

 void test() throws Exception {
 AttrValMap aValMap = null;
 HashMap hValMap = null;

 Logger.debug ("cleanup");
 // Delete older entries
 mapper.deleteAll (Primitive.class);
 display ();

 // Create few Primitive objects and persist them to database
 Primitive o1 = new Primitive(1,null);
 Primitive o2 = new Primitive(2, "Hey");
 Primitive o3 = new Primitive(3, "Welcome !");
 mapper.create (o1);
 mapper.create (o2);
 display ();

 // Demonstrate successful transaction commit
 // Create a new transaction for current thread
 mapper.beginTransaction();
 Logger.debug ("demonstrating transaction commit.");
 try {

 dbMapper User Guide

 52 of 69

 // Perfrom some valid database operations
 mapper.create (o3);
 mapper.delete (o2);
 o3.setY ("New value");
 mapper.update (o3);
 // Commit all database changes
 mapper.commitTransaction();
 }
 catch (Exception ex1) {
 // Should not happen, just in case (dump the error msg and
 // terminate the process)
 Logger.debug ("failure: Unexpected exception : " + ex1);
 System.exit(1);
 }
 Logger.debug ("sucess. the values after modification.");
 display ();

 // Demonstrating unsuccessful transaction (rollback case)
 // Create a new transaction for current thread
 mapper.beginTransaction();
 Logger.debug ("demonstrating transaction rollback.");
 try {
 // Perfrom some valid database operations
 mapper.create (o2);
 mapper.delete (o3);
 // Bad operation. Trying to re-insert o1 which will fail as
 // it is a duplicate record (primary key violation)
 mapper.create (o1);
 // Code should never reach here, if it does, dump the error
 // msg and terminate the process
 Logger.debug ("failure: Unexpected error.");
 System.exit(1);
 }
 catch (Exception ex1) {
 // Rollback the database changes made in this transaction
 mapper.rollbackTransaction();
 }
 // Dump all the records and verify changes made in above transaction
 // are rolled back (e.g. o3 is not deleted)
 Logger.debug ("sucess. the values after rollback.");
 display ();
 }

 private void display () throws Exception {
 Collection c = mapper.findAll (Primitive.class);
 Logger.debug ("Entries in database: " + c.toString());
 }

4.4.6 Example5 – Nested Field

Now that you have seen how the dbMapper package can persist user objects that contain only basic fields
to a relation database, it is time to explore some of the more advanced OR mapping concepts defined by the
dbMapper package, such as nested fields. In this example, we will define two analogous classes, namely
Ring1 and Ring2. Each of, these classes contain three nested Java attributes, namely
circle.radius, circle.center.x and circle.center.y (please see the containment
relationship described in the class diagram below). These two classes are mapped to the demo_ring
table. We will present two alternatives to map these nested Java fields to the demo_ring table columns:

• Ring1 class mapping: Map the nested attributes as basic fields by providing custom get and set
methods for the nested attributes.

• Ring2 class mapping: Map the nested attributes directly as nested_fields (as described in the
“nested_type Element” section).

 dbMapper User Guide

 53 of 69

Ring1

id : int
width : int
circle : Circle

getId() : int
setId(id : int) : void
getWidth() : int
setWidth(width : int) : void
getRadius() : int
setRadius(radius : int) : void
getX() : int
setX(x : int) : void
getY() : int
setY(y : int) : void

(from nested)
Ring2

id : int
width : int
circle : Circle

getId() : int
setId(id : int) : void
getWidth() : int
setWidth(width : int) : void
getCircle() : Circle
setCircle(circle : Circle) : void

(from nested)

Point

x : int
y : int

getX() : int
setX(x : int) : void
getY() : int
setY(y : int) : void

(from nested)

Circle

radius : int
center : Point

Circle(radius : int, center : Point)
getRadius() : int
setRadius(radius : int) : void
getCenter() : Point
setCenter(center : Point) : void

(from nested)

1
1

1
1

circle

11 11

circle

1

1

1

1
center

The SQL schema for demo_ring table:

create table demo_ring (
 id INTEGER PRIMARY KEY,
 radius INTEGER,
 width INTEGER,
 x INTEGER,
 y INTEGER
)

The circle.radius, circle.center.x and circle.center.y nested fields are mapped to the
radius, x and y columns, respectively.

To demonstrate the first mapping alternative, let us look at the Ring1 class definition and it’s mapping to
the demo_ring table:

public class Ring1 {
 // Attribute declarations

 // The no-argument constructor, reqd by dbMapper
 public Ring1() {
 // Created and initialize all nested fields
 circle = new Circle(0, new Point(0,0));
 }
 // Getter and setter methods

 public int getX () {
 return circle.getCenter().getX();
 }
 public void setX (int x) {
 circle.getCenter().setX (x);
 }

}

<mapping class = "Ring1" table="demo_ring" >

 <field id="x">
 <basic_type>int</basic_type>
 </field>

</mapping>

 dbMapper User Guide

 54 of 69

This class definition and class mapping demonstrate how a nested attribute, in this case the
circle.center.x attribute, may be mapped as a basic field. This is accomplished by supplying the
custom set and get methods, getX() and setX(), which access the nested attribute directly (i.e. without
referencing any intermediate object).

The second alternative provides a cleaner method for mapping nested attributes to database columns. This
method does not require the mapped class to define the custom set and get methods, e.g. getX()and
setX(). Before going through this example, please be sure to read the example covered in the "nested
type Element" section.

The following code snippet shows how the circle.center.x nested Java field of the Ring2 class is
mapped as a nested field to the column x:

<mapping class = "Ring2" table="demo_ring" >

 <field id="x">
 <nested_type column="x">
 <intermediate_node node_id="circle" class="Circle" />
 <intermediate_node node_id="point" class="Point">
 <get_method> getCenter </get_method>
 </intermediate_node>
 <leaf_node node_id="x" class="int" />
 </nested_type>
 </field>

</mapping>

The nested x field of a Ring2 object, say ring2, is accessed as follows:
 ring2.getCircle().getCenter().getX()

To modify this nested attribute, dbMapper will use:
 ring2.getCircle().getCenter().setX(newIntegerValue)

If any of the intermediate get methods return a null object, the dbMapper acts as if the leaf field, x, was
null.

Notice that the default Ring2 constructor (i.e. the constructor that takes no arguements) creates all of the
intermediate objects in the Ring2 object containement tree:

public class Ring2 {

 // The default constructor, reqd by dbMapper
 public Ring2() {
 // Created and initialize all nested fields
 circle = new Circle(0, new Point(0,0));
 }
 ...
}

Now it is time to create and persist some Ring1 and Ring2 objects to the database. The following code is
taken from the Test.java file:

 // Test Ring1 (nested attributes mapped to basic types)
 void testRing1 () throws Exception {
 // Delete older entries
 mapper.deleteAll (Ring1.class);

 // Create new entries
 Ring1 r1 = new Ring1 (1, 3, new Circle(9, new Point(1,2)));
 Ring1 r2 = new Ring1 (2, 4, new Circle(16, new Point(2,3)));
 mapper.create (r1);

 dbMapper User Guide

 55 of 69

 mapper.create (r2);
 Logger.debug ("create(Object) :: Object " + r1 + " and " + r2
 + " is successfully created.");

 // Update some nested attributes
 AttrValMap aMap1 = new AttrValMap();
 aMap1.put ("x", 5);
 aMap1.put ("radius", 11);
 mapper.update (r1, aMap1, true);
 Logger.debug ("update(object,aMap,bollean) on object " + r1
 + " is successfully excuted.");

 // Find objects by giving nested attributes
 AttrValMap aMap2 = new AttrValMap();
 aMap2.put ("y", 3);
 Collection c1 = mapper.findByAttributes (aMap2, Ring1.class);
 Logger.debug ("findByAttributes(aval,class) :: Collection "
 + c1.toString() + " is successfully found.");
 }

 // Test Ring2 (nested attributes mapped to nested types)
 void testRing2 () throws Exception {
 // Delete older entries
 mapper.deleteAll (Ring2.class);

 // Create new entries
 Ring2 r1 = new Ring2 (1, 2, new Circle(32, new Point(0,0)));
 Ring2 r2 = new Ring2 (2, 2, new Circle(25, new Point(1,1)));
 mapper.create (r1);
 mapper.create (r2);
 Logger.debug ("create(Object) :: Object " + r1 + " and " + r2
 + " is successfully created.");

 // Create a ring which has null circle (intermediate nested attributes
 // are null)
 Ring2 r3 = new Ring2 (3, 3, null);
 mapper.create(r3);
 Logger.debug ("create(Object) :: Object " + r3
 + " is successfully created.");

 // Update some nested attributes
 AttrValMap aMap1 = new AttrValMap();
 aMap1.put ("x", 3);
 aMap1.put ("radius", 21);
 mapper.update (r1, aMap1, true);
 Logger.debug ("update(object,aMap,bollean) on object " + r1
 + " is successfully excuted.");

 // Find objects by giving nested attributes
 AttrValMap aMap2 = new AttrValMap();
 aMap2.put ("y", 1);
 Collection c1 = mapper.findByAttributes (aMap2, Ring2.class);
 Logger.debug ("findByAttributes(aval,class) :: Collection "
 + c1.toString() + " is successfully found.");

 // Load ring with no circle.
 Ring2 r3dup = (Ring2) mapper.findByPrimaryKey (new Integer(3),
 Ring2.class);
 Logger.debug ("findByPrimaryKey(key,class) :: found object " + r3dup);
 }

4.4.7 Example6 – Person Class (Complex and Complex Collection Fields)

All of the examples discussed so far use classes that are simple in the sense that each of their fields can be
mapped to a single database column. This example demonstrates the use of more complicated classes, such
as those that contain instances of other user-defined classes, or collections of objects.

 dbMapper User Guide

 56 of 69

Note that the dbMapper supports both one-to-one and one-to-many relationships between a user object and
its fields. Please refer to the “Field Types” section for a more detailed discussion of the complex and
complex collection fields.

The containment relationship used in this example is as follows:

Person
name : String

House
ownerName : String
houseId : int
area : float
vintage : int

*
1

*
1

residences
<<array>>

GeoLoc
addrId : int
x : float
y : float

Address
addrId : int
ownerName : String
houseId : int
streetAddr : String
city : String
state : String
zip : int

1

1

1

1address
<<single>>

1 111 location

<<single>>

Part
vin : int
partId : String
descr : String

Vehic le
ownerName : String
vin : int
make : String

1

*

1

*
vehicles

<<collection>>

1 *1 *

parts

<<collect ion>>

A person object owns several houses (many-to-one array relation) and vehicles (many-to-one
collection relation). Each house has one address (one-to-one relation) whose geographic location is
specified by a GeoLoc object (one-to-one relation). A vehicle object may contain several parts
(many-to-one collection relation).

Let us look at the class definitions:

public class Person {
 // Primary key attribute
 String name;
 // many-to-one array relationship with residences attribute
 House[] residences;
 // many-to-one collection relationship with vehicles attribute
 Vector vehicles; // Vector of Vehicle

 // The no-argument constructor, reqd by dbMapper
 public Person() { }
 // Other constructors

 // Getter/Setter methods for the fields
 public String getName () { return name; }
 public House[] getHouses () { return residences; }
 public Vector getVehicles () { return vehicles; }

 public void setName (String name) { this.name = name; }
 public void setHouses (House[] residences) { this.residences = residences; }
 public void setVehicles (Vector vehicles) { this.vehicles = vehicles; }
 // Other methods

}

public class House {
 // Primary key attributes
 String ownerName;
 int houseId;
 // one-to-one relationship with address attribute
 Address address;
 // other (basic) attributes
 float area;
 int vintage;

 dbMapper User Guide

 57 of 69

}

public class Address {
 // Primary key attribute
 int addrId;
 // Parent class relation attributes
 String ownerName;
 int houseId;
 // one-to-one relationship with location attribute
 GeoLoc location;
 // other (basic) attributes
 String streetAddr;
 String city;
 String state;
 int zip;

}

public class GeoLoc {
 // Primary key attribute
 int addrId;
 // other (basic) attributes
 float x;
 float y;

}

public class Vehicle {
 // Primary key attribute
 int vin;
 // many-to-one collection relationship with parts attribute
 ArrayList parts = new ArrayList(1);
 // Parent class relation attributes
 String ownerName;
 // other (basic) attributes
 String make;

}

public class Part {
 // Primary key attribute
 String partId;
 // Parent class relation attributes
 int vin;
 // other (basic) attributes
 String descr;

}

The basic fields of the Person class are mapped to the demo_person table columns as follows:

create table demo_person (
 name VARCHAR(64) PRIMARY KEY
);

The demo_person_house table is used to store the residences attribute of a Person object. Note
the foreign key relationship between the demo_person.name and
demo_person_house.ownerName columns. Multiple demo_person_house records may be
linked to a single demo_person record using this foreign key relationship; and upon deletion of the
demo_person record, all these demo_person_house records are automatically deleted. The
ownerName column is also part of the composite primary key defined on the demo_person_house
table.

create table demo_person_house (
 ownerName VARCHAR(64) NOT NULL,
 houseId INTEGER NOT NULL,

 dbMapper User Guide

 58 of 69

 area FLOAT,
 vintage INTEGER,
 CONSTRAINT constr_demo_ph_pk PRIMARY KEY(ownerName, houseId),
 CONSTRAINT constr_demo_ph_fr_name FOREIGN KEY(ownerName)
 REFERENCES demo_person(name) ON DELETE CASCADE
)

The house address is saved in the demo_person_address table. This table has a single primary
key column named addrId. The houseId and ownerName columns capture the one-to-one relationship
between a demo_person_house and demo_person_address database record.

create table demo_person_address (
 addrId INTEGER PRIMARY KEY,
 ownerName VARCHAR(64),
 houseId INTEGER,
 street VARCHAR(128),
 city VARCHAR(64),
 state VARCHAR(32),
 zip INTEGER,
 CONSTRAINT constr_demo_pa_fr_house FOREIGN KEY (ownerName, houseId)
 REFERENCES demo_person_house(ownerName, houseId) ON DELETE CASCADE
)

The demo_person_address_location, demo_person_vehicle and
demo_person_vehicle_part tables are mapped to the GeoLoc, Vehicle, and Part classes
respectively. The table schema (constraints, key relations, primary key etc.) follows the same conventions
as described above:

create table demo_person_address_location (
 addrId INTEGER NOT NULL,
 x FLOAT,
 y FLOAT,
 CONSTRAINT constr_demo_pal_fr_id FOREIGN KEY (addrId)
 REFERENCES demo_person_address(addrId) ON DELETE CASCADE
)

create table demo_person_vehicle (
 vin INTEGER PRIMARY KEY,
 ownerName VARCHAR(64) NOT NULL,
 make VARCHAR(128),
 CONSTRAINT constr_demo_pv_fr_name FOREIGN KEY(ownerName)
 REFERENCES demo_person(name) ON DELETE CASCADE
)

create table demo_person_vehicle_part (
 partId VARCHAR(64) PRIMARY KEY,
 vin INTEGER NOT NULL,
 descr VARCHAR(128),
 CONSTRAINT constr_demo_pvp_fr_vin FOREIGN KEY(vin)
 REFERENCES demo_person_vehicle(vin) ON DELETE CASCADE
)

The following is the mapping file used to associate the Person, House, Address, GeoLoc, Vehicle
and Part classes to the corresponding database tables, which were described above:

<?xml version="1.0"?>
<!DOCTYPE mappings PUBLIC "DBMapper OR Mapping"
"http://www.onsd.nec.com/software/db_or_mapping.dtd">

<mappings>

<mapping class = "Person" table="demo_person" >
 <!-- implicit primary key class "String" -->
 <field id="name" is_key="true" >
 <basic_type>String</basic_type>
 </field>

 dbMapper User Guide

 59 of 69

 <field id="residences" is_key="false" >
 <get_method> getHouses </get_method>
 <set_method> setHouses </set_method>
 <complex_collection_type>
 <element_mapref class="House"/>
 <!-- more than one house stored in an array. -->
 <container_class> House[] </container_class>
 <key_bindings>
 <key_binding parent_field="name" child_field="ownerName"/>
 </key_bindings>
 </complex_collection_type>
 </field>
 <field id="vehicles" is_key="false" >
 <complex_collection_type>
 <element_mapref class="Vehicle"/>
 <!-- more than one vehicle stored in a vector(collection). -->
 <container_class>java.util.Vector</container_class>
 <key_bindings>
 <key_binding parent_field="name" child_field="ownerName"/>
 </key_bindings>
 </complex_collection_type>
 </field>
</mapping>

<mapping class = "House" table="demo_person_house" >
 <!-- pk_class name="String,int" -->
 <field id="ownerName" is_key="true" >
 <basic_type>String</basic_type>
 </field>
 <field id="houseId" is_key="true" >
 <basic_type>int</basic_type>
 </field>
 <field id="area" is_key="false" >
 <basic_type>float</basic_type>
 </field>
 <field id="vintage" is_key="false" >
 <basic_type>int</basic_type>
 </field>
 <field id="address" is_key="false" >
 <complex_type>
 <element_mapref class="Address"/>
 <key_bindings>
 <key_binding parent_field="ownerName" child_field="ownerName"/>
 <key_binding parent_field="houseId" child_field="houseId"/>
 </key_bindings>
 </complex_type>
 </field>
</mapping>

<mapping class = "Address"
 table="demo_person_address" >
 <!-- pk_class name="int" -->
 <field id="addrId" is_key="true" >
 <basic_type>int</basic_type>
 </field>
 <field id="ownerName" >
 <basic_type>String</basic_type>
 </field>
 <field id="houseId" >
 <basic_type>int</basic_type>
 </field>
 <field id="streetAddr" is_key="false" >
 <basic_type column="street">String</basic_type>
 </field>
 <field id="city" is_key="false" >
 <basic_type>String</basic_type>
 </field>
 <field id="state" is_key="false" >
 <basic_type>String</basic_type>
 </field>
 <field id="zip" is_key="false" >

 dbMapper User Guide

 60 of 69

 <basic_type>int</basic_type>
 </field>
 <field id="location" is_key="false" >
 <complex_type>
 <element_mapref class="GeoLoc"/>
 <key_bindings>
 <key_binding parent_field="addrId" child_field="addrId"/>
 </key_bindings>
 </complex_type>
 </field>
</mapping>

<mapping class = "GeoLoc"
 table="demo_person_address_location" >
 <!-- no pk_class -->
 <field id="addrId" is_key="false" >
 <basic_type>int</basic_type>
 </field>
 <field id="x" is_key="false" >
 <basic_type>float</basic_type>
 </field>
 <field id="y" is_key="false" >
 <basic_type>float</basic_type>
 </field>
</mapping>

<mapping class = "Vehicle"
 table="demo_person_vehicle" >
 <!-- pk_class name="int" -->
 <field id="vin" is_key="true" >
 <basic_type>int</basic_type>
 </field>
 <field id="ownerName" >
 <basic_type>String</basic_type>
 </field>
 <field id="make" is_key="false" >
 <basic_type>String</basic_type>
 </field>
 <field id="parts" is_key="false" >
 <complex_collection_type>
 <element_mapref class="Part"/>
 <!-- more than one part stored in a list(collection). -->
 <container_class>java.util.ArrayList</container_class>
 <key_bindings>
 <key_binding parent_field="vin" child_field="vin"/>
 </key_bindings>
 </complex_collection_type>
 </field>
</mapping>

<mapping class = "Part"
 table="demo_person_vehicle_part" >
 <!-- int pk_class -->
 <field id="partId" is_key="true" >
 <basic_type>String</basic_type>
 </field>
 <field id="vin" is_key="false" >
 <basic_type>int</basic_type>
 </field>
 <field id="descr" is_key="false" >
 <basic_type>String</basic_type>
 </field>
</mapping>

</mappings>

Note that the Person OR mapping overrides the default get/set method names for the residences
field. Please refer to the "field Element" section for details. Now we are ready to use the above mapping to
create a Person object (with complex and complex collection fields) in the database.

 dbMapper User Guide

 61 of 69

class TestPerson {
 // create mapper object

 public void test() throws Exception {
 // Delete older entries
 mapper.deleteAll (Person.class);

 // Instantiate all House objects owned by "Charles Smith"
 Address r1 = new Address (1, "Charles Smith", 101, "12056 Greywing Sq",
 "Reston", "VA", 20191,
 new GeoLoc(1, (float)34.5, (float)-23.6));
 House h1 = new House ("Charles Smith", 101, 1024, 5, r1);
 Address r2 = new Address (2, "Charles Smith", 102, "13452 Farmcrest Ct",
 "Herndon", "VA", 20171,
 new GeoLoc(1, (float)34.45, (float)-23.61));
 House h2 = new House ("Charles Smith", 102, 1025, 1000000, r2);

 // Instantiate all the vehicles owned by "Charles Smith"
 Vehicle v1 = new Vehicle ("Charles Smith", 234567, "Toyota Camary", null);
 ArrayList parts1 = new ArrayList();
 parts1.add (new Part(874687, "steering",
 "steer the vehicle in desired direction."));
 parts1.add (new Part(874687, "tyres", null));
 Vehicle v2 = new Vehicle ("Charles Smith", 874687, "Ford", parts1);

 // Instantiate the "Charles Smith" Person object with above
 // houses and vehicles
 House[] houses1 = new House[] {h1,h2};
 Vector vehicles1 = new Vector(2);
 vehicles1.add (v1);
 vehicles1.add (v2);
 Person p1 = new Person("Charles Smith", houses1, vehicles1);

 // Persist the entire Person object containment tree (including
 // vehicles, houses, address, locations, parts) in database
 mapper.createTree (p1);
 Logger.debug ("create(Object) :: Object " + p1
 + " is successfully created.");
 Logger.debug ("---");

 // Find the persistent "Charles Smith" Person object in database
 // Load the entire Person object containment tree from database
 // in another Person object
 Person p1Dup = (Person) mapper.findByPrimaryKey ("Charles Smith",
 Person.class, 9999);
 // Compare p1 and p1Dup object containment tree in the log file,
 // field by field. The fields should have same value.
 Logger.debug ("findByPrimaryKey() :: Object " + p1Dup
 + " is successfully executed.");
 }
}

Refer to the “Using a DBInterface” section for more examples of database operations on an object with
complex and complex collection fields.

4.4.8 Example7 - Key Binding Field Types

As part of demonstrating how the dbMapper handles complex and complex collection fields, the example
in the previous section demonstrated the use of key bindings. Recall that the key bindings are used by the
dbMapper to correlate complex and complex collection fields to their containing objects. In the example in
the previous section, the Java types and SQL types of the parent and child fields of the key bindings were
the same. Although such consistency between the parent and child fileds of the key binding is
recommended, it is not necessary. This section provides an example that shows that the parent and child
fields of the key binding need not necessarily be of the same Java and SQL types.

 dbMapper User Guide

 62 of 69

Before presenting the example, we first state the only restriction that applies to the types of the child and
parent fields of a key binding: either the Java type of the child field can be promoted by the Java compiler
to the type of the parent field, or vice versa. Note that there are no restrictions or dependencies between the
SQL types of the child and parent fields of the key binding. (Of course, the SQL type used to store any
field must be consistent with the Java type of the field.)

In this example, an Account class contains a complex field named balance, of type Balance. The
key binding used by this example associates the accountNumber field of the Balance class with the
id field of the Account class. Note that the Java type of the accountNumber field is long and its
SQL type is INTEGER, while the Java type of the id field of the Account class is Integer and its SQL
type is SMALLINT.

Balance

accountNumber : long
balance : float

getAccountNumber() : long
setAccountNumber(accountNumber : long) : void
getBalance() : float
setBalance(balance : float)

(from difftype)
Account

id : Integer
balance : Balance

getId() : Integer
setId(id : Integer) : void
getBalance() : Balance
setBalance(balance : Balance)

(from difftype)

1 11 1

balance

The Account class uses the demo_account table (for storage of the basic fields), and the Balance
class uses the demo_balance table.

create table demo_account (
 id SMALLINT PRIMARY KEY
)
create table demo_balance (
 accountNumber INTEGER NOT NULL,
 balance FLOAT,
 CONSTRAINT constr_demo_ch_fr_accountnum FOREIGN KEY(accountNumber)
 REFERENCES demo_account(id) ON DELETE CASCADE
)

The class mappings for the Account and Balance class follow:

<mapping class = "Account" table="demo_account" >
 <!-- implicit primary key class "Integer" -->
 <field id="id" is_key="true" >
 <basic_type column="id">Integer</basic_type>
 </field>
 <field id="balance" is_key="false" >
 <complex_type>
 <element_mapref class="Balance"/>
 <key_bindings>
 <key_binding parent_field="id" child_field="accountNumber"/>
 </key_bindings>
 </complex_type>
 </field>
</mapping>

<mapping class = "Balance" table="demo_balance" >
 <field id="accountNumber" is_key="true">
 <basic_type>long</basic_type>
 </field>
 <field id="balance" >
 <basic_type>float</basic_type>
 </field>
</mapping>

The following code fragment simply creates and persists a new Account object containment tree to the
database. Later it reads the entire Account object containment tree from the database to memory.

 dbMapper User Guide

 63 of 69

 void test() throws Exception {
 // Delete older entries
 mapper.deleteAll (Account.class);

 Account p1 = new Account (new Integer(1), new Balance(1, (float) 430.35));
 mapper.createTree (p1);

 Account p1Dup = (Account) mapper.findByPrimaryKey (new Integer(1),
 Account.class, 3);
 }

4.4.9 EJB Example
The examples discussed in this section introduce another powerful feature of the dbMapper: how to write
bean managed persistent (BMP) for an entity bean using dbMapper.

4.4.9.1 Compiling and Running This Example
Since an EJB example, which is located in the “ex08-ejb” directory, is substantially more involved than the
other examples, the procedures to compile and run it are somewhat different from the other examples. You
will need to have “Ant” installed on your system to compile this example. Also, note that this example was
written for the Orion application server. To compile the example with other application servers, you may
need to modify the “env.bat” and “build.xml” files accordingly. (It is a good idea to backup the original
files before modifying them with your changes.)

Before compiling and running the example, you will first need to modify the “env.bat” file to match your
setup, and then execute it toget the desired environment.

The “build.xml” file contains the instructions to compile the example. First edit that file and modify any
settings as needed to match your setup. Once the file is modified, run “ant” to compile the example.

Before running the example, make sure that your database and application server are up and running. Then
execute the “run.bat” script to run the example.

4.4.9.2 Counter Entity Bean
Our EJB example will be a simple counter bean. The counter bean represents a dynamic counter value.
Through persistence, the counter value is stored in an underlying relational database.

Let’s look at the counter bean remote interface, which exposes methods for incrementing and decrementing
the counter value:

import java.rmi.RemoteException;
import javax.ejb.EJBObject;

public interface Counter extends EJBObject {
 // Increment the counter by 1
 public int increment() throws RemoteException;
 // Decrement the counter by 1
 public int decrement() throws RemoteException;
 // Get the current counter value
 public int value() throws RemoteException;
}

The home interface for Counter is specified by CounterHome.java, shown below. The
CounterHome class defines a single factory method, create(), to create Counter EJB objects:

// import statements

public interface CounterHome extends EJBHome {
 // creates a Counter EJB object with given (unique) counter identifier.

 dbMapper User Guide

 64 of 69

 public Counter create(String counterId) throws CreateException, RemoteException;
 // Find a counter by its primary key (counter id).
 public Counter findByPrimaryKey(String primaryKey)
 throws FinderException, RemoteException;
 // Returns all the Counter entity beans stored in database
 public Enumeration findAll() throws FinderException, RemoteException;
 // Returns all the Counter beans that have a non-zero value
 public Enumeration findNonZeroCounters() throws FinderException, RemoteException;
}

The create() method creates a new database record representing a counter. The CounterHome
interface defines three finder methods. The findByPrimaryKey method searches the database for a
counter that already exists. The findAll method returns all counters stored in the database. The
findNonZeroCounters method searches the database for counters that have a non-zero counter value.

The Counter entity bean’s primary key (counter id) is a simple String object. The client code that
constructs the counter id should make sure that it’s unique.

Before going through the entity bean implementation class, CounterEJB, let’s look at the helper class,
CounterBean, and the demo_counter database table. The demo_counter database table consists
of two columns: id and value. The id column is the primary key for this table..

create table demo_counter (
 id VARCHAR(64) PRIMARY KEY,
 value INTEGER
)

CounterBean is a simple Java class that encapsulates all the necessary information for a counter. The
CounterBean class is composed of two fields, counterId and value:

public class CounterBean {
 private String counterId; // Holds counter bean’s primary key (counter id)
 private int value = 0; // Holds current counter value (initialized with 0)

 public CounterBean () {
 }
 // Getter & setter methods for counterId & value fields
 ...
 public int increment() {
 return ++value;
 }
 public int decrement() {
 return --value;
 }
}

The class mapping (between the CounterBean class and demo_counter table) is specified by the
following OR mapping file (with path data/or_mapping.xml):

<?xml version="1.0"?>
<!DOCTYPE mappings PUBLIC "DBMapper OR Mapping"
"http://www.onsd.nec.com/software/db_or_mapping.dtd">

<mappings>
<mapping class = "CounterBean"
 table="demo_counter" >
 <!-- implicit primary key class "String" -->
 <field id="counterId" is_key="true" >
 <basic_type column="id">String</basic_type>
 </field>
 <field id="value" is_key="false" >
 <basic_type>int</basic_type>
 </field>
</mapping>

 dbMapper User Guide

 65 of 69

</mappings>

The above mapping is very similar to the other mappings discussed in earlier examples. The primary key
field, counterId, is mapped to the id column of the demo_counter table. The counter value field
is mapped to the value column. Since the above mapping contains only one key field, counterId, the
String class will be used as the primary key class for the mapping.

This example assumes that the application server where the counter entity bean is deployed is configured
with a JNDI data source that can be accessed within EJB implementation code through the JNDI context.
The JNDI data source is used by the dbMapper to save and load counter beans to and from a database. The
dbmapper.xml file located in the data directory is used to initialize the DBMapper object. Note,
absolute paths are used for both the dbmapper.xml and or_mapping.xml files, as they are loaded
from the ejb jar file (see section “DBModule Class”). The content of the dbmapper.xml file follows:

<?xml version="1.0"?>
<!DOCTYPE root PUBLIC "DBMapper Config" "http://www.onsd.nec.com/software/dbmapper.dtd">

<root>

<data_sources>
 <data_source id="default_ds">
 <jndi_data_source jndi_location="jdbc/OracleCoreDS" />
 </data_source>
</data_sources>

<mapping_contexts>
 <mapping_context id="default" data_source_id="default_ds">
 <or_mapping_files>
 <or_mapping_file path="/or_mapping.xml"/>
 </or_mapping_files>
 </mapping_context>
</mapping_contexts>

</root>

The above configuration defines a JNDI data source named default_ds that makes use of the
javax.sql.DataSource that is bound to the "jdbc/OracleCoreDS" JNDI path at the application server.
The “default” mapping context is created by binding the default_ds data source and the mappings
(already discussed) defined in or_mapping.xml file.

Our entity bean implementation is specified by the CounterEJB.java class, shown below:

import java.io.Serializable;
import com.nec.tdd.tools.dbMapper.*;
import java.util.*;
import javax.ejb.*;

public class CounterEJB implements EntityBean {

The above snippet declares the CounterEJB class that represents a counter bean. Notice that the
CounterEJB class extends the EntityBean interface, which all entity bean implementations must do.
The following code snippet declares two variables, namely counter and mapper. The counter field
is the only persistent field of our entity bean class. The CounterEJB class will load and store the
database data in the counter field using the mapper named mapper.

 // Bean-managed state field
 private CounterBean counter = new CounterBean();
 // The database interface used to load/store counter from/to database.
 private DBInterface mapper = null;

 dbMapper User Guide

 66 of 69

The following code declares the ctx attribute and related methods (required by the EJB specification).
The ctx attribute stores the entity bean context and can later be used to acquire the environment
information.

 private EntityContext ctx;
 public void setEntityContext(EntityContext ctx) {
 this.ctx = ctx;
 }

 public void unsetEntityContext() {
 this.ctx = null;
 }

The EJB container invokes the ejbLoad method to load database data into the bean instance. The
ejbLoad method acquires the primary key via the getPrimaryKey()call to the entity bean context.
This is done to determine what data should be loaded into the counter field. Next, the initDBIf()
method (explained later in this section) is invoked to initialize the mapper, mapper. Subsequently, the
findByPrimaryKey()method call on mapper updates the in-memory entity bean object to reflect the
current counter value stored in the database.

 /**
 * Loads the EJB from the persistent storage.
 */
 public void ejbLoad() {
 String id = (String) ctx.getPrimaryKey();
 System.out.println ("ejbLoad (" + id + ")");
 try {
 initDBIf();
 CounterBean newCounter =
 (CounterBean) mapper.findByPrimaryKey (id, CounterBean.class);
 if (null == counter) {
 throw new NoSuchEntityException ("ejbLoad: No counter with id="
 + id);
 }
 counter = newCounter;
 } catch (Exception ex) {
 throw new EJBException(ex);
 }
 }

The EJB container calls the ejbStore method to update the database to the current values of this entity
bean instance.

 /**
 * Stores the EJB in the persistent storage.
 */
 public void ejbStore() {
 String id = (String) ctx.getPrimaryKey();
 System.out.println ("ejbStore (" + id + ")");
 try {
 initDBIf();
 mapper.update(counter);
 } catch (Exception ex) {
 throw new EJBException(ex);
 }
 }

The EJB container invokes the following EJB-create method when a client calls the create(String
counterId) method on a CounterHome object. The ejbCreate method attempts to add a new
counter into the database with the given counter identifier.

 public String ejbCreate (String counterId) throws CreateException {
 System.out.println ("ejbCreate (" + counterId + ")");
 counter.setCounterId(counterId);
 counter.setValue(0);

 dbMapper User Guide

 67 of 69

 try {
 initDBIf();
 mapper.create(counter);
 } catch (Exception ex) {
 throw new CreateException (ex.getMessage());
 }

 return counterId;
 }

The ejbRemove method is invoked to destroy a counter and remove it from the database.

 /**
 * Deletes the EJBBean from the persistent storage.
 */
 public void ejbRemove() {
 String id = (String) ctx.getPrimaryKey();
 System.out.println ("ejbRemove (" + id + ")");
 boolean isDeleted = true;
 try {
 initDBIf();
 isDeleted = mapper.deleteByPrimaryKey (id, CounterBean.class);
 } catch (Exception ex) {
 throw new EJBException(ex);
 }
 if (! isDeleted) {
 throw new NoSuchEntityException ("No counter with id " + id);
 }
 }

The following code implements all the finder methods declared in the CounterHome home interface.
Notice that the EJB-finder methods have the same signature as thefindXXX methods in the home
interface. These finder methods are used to find existing counter beans in the database. They return either
the primary key (String class for the counter bean) for the entity bean it finds or an enumeration of
primary keys if more than one are found.

 /**
 * Attempts to find the EJBBean with a given Primary Key from
 * the persistent storage.
 */
 public String ejbFindByPrimaryKey (String pk)
 throws ObjectNotFoundException {
 System.out.println ("ejbFindByPrimaryKey (" + pk + ")");
 CounterBean bean = null;
 try {
 initDBIf();
 bean = (CounterBean) mapper.findByPrimaryKey (pk, CounterBean.class);
 } catch (Exception ex) {
 throw new EJBException (ex);
 }
 if (bean != null) {
 System.out.println ("ejbFindByPrimaryKey found counter[" + pk + "]");
 counter = bean;
 } else {
 throw new NoSuchEntityException ("No counter with id " + pk);
 }
 return pk;
 }

 public Enumeration ejbFindAll() {
 System.out.println ("ejbFindAll");
 try {
 initDBIf();
 Collection c = mapper.findAllPrimaryKeys (CounterBean.class);
 System.out.println ("The Collection is " + c);
 return Collections.enumeration (c);
 } catch (Exception ex) {
 throw new EJBException (ex);

 dbMapper User Guide

 68 of 69

 }
 }

 public Enumeration ejbFindNonZeroCounters() {
 System.out.println ("ejbFindNonZeroCounters");
 try {
 initDBIf();
 Collection c = mapper.findPrimaryKeysByQuery (
 "select id from demo_counter where value<>0", CounterBean.class);
 return Collections.enumeration (c);
 } catch (Exception ex) {
 throw new EJBException (ex);
 }
 }

Implementation of remote interface methods (see Counter.java);

 public int increment () {
 System.out.println("Incrementing counter[" + counter.getCounterId() +"]");
 return counter.increment();
 }

 public int decrement () {
 System.out.println("Decrementing counter[" + counter.getCounterId() +"]");
 return counter.decrement();
 }

 public int value() {
 return counter.getValue();
 }

The other EJB-required methods that the EJB container will call to manage the counter entity bean:

 public void ejbActivate() {
 System.out.println ("ejbActivate (" + ctx.getPrimaryKey() + ")");
 }

 public void ejbPassivate() {
 }

 public void ejbPostCreate(String counterId) {
 }

The following method creates and initializes the shared mapper, mapper, used by this entity bean. The
mapper object handles the object-relational mapping of counter entity beans to the database. The
following code demonstrates two different ways to create the mapper object. The first and simplest way
is to load the required data source and the mappings from a mapper configuration file. Alternatively, the
mapper object can be instantiated by directly invoking dbMapper class methods (please see the code
within the comments).

 private void initDBIf () throws Exception {
 if (mapper != null) {
 return;
 }

 // Get the shared singelton DBModule instance
 System.out.println ("Loading DB Mapper file and creating the mapping "
 + "context");
 DBModule dbm = DBModule.init ("/dbmapper.xml");
 mapper = dbm.createDefaultMapper ("default");

/*
 // Uncomment following if dont want to use XML files
 // Following code creates mapper using dbMapper classes directy (refer to
 // javadoc API for details)
 DBModule dbm = DBModule.init();
 ORMapEntry mapEntry = new ORMapEntry();
 mapEntry.setClassName (CounterBean.class.getName());

 dbMapper User Guide

 69 of 69

 mapEntry.setTableName ("demo_counter");
 ORFieldInfo[] fields = new ORFieldInfo [2];
 fields[0] = new ORFieldInfo (mapEntry, "counterId", null, null, true,
 new ORFieldInfo.BasicTypeInfo("String", "id"));
 fields[1] = new ORFieldInfo (mapEntry, "value", null, null, false,
 new ORFieldInfo.BasicTypeInfo("int", "value"));
 mapEntry.setFields (fields);
 ORMappingInfo mappingInfo = new ORMappingInfo();
 mappingInfo.add (mapEntry);

 com.nec.tdd.tools.dbMapper.JNDIDataSource ds =
 new com.nec.tdd.tools.dbMapper.JNDIDataSource ("jdbc/OracleCoreDS");

 mapper = new DefaultMapper (ds, mappingInfo);
*/
 }

}

	Introduction
	Using a DBInterface
	Field Types
	Basic Field
	Nested Field
	Complex Field
	Complex Collection Field

	Key Fields and Primary Keys
	Data-Source, Mappings, Mapping Contexts, and Mappers
	Transaction Model
	DBInterface Methods
	Creating a User Object
	Removing a User Object
	Updating a User Object
	Finding User Objects
	Finding Primary Keys
	User-managed Transaction Methods
	Other Direct Database Access Methods
	Creating a DBInterface
	Introduction
	Overview of Key Classes, Concepts, and Data
	DefaultMapper Class
	DBModule Class
	Mapper Configuration Files
	Data Sources and the DataSource Interface
	Mapping Set Files
	Custom Database Processing: DAOs (Data Access Objects) and the DAOInterface
	Configuring Mappers Via The Programming API

	Creating a Mapper Configuration File
	logging Element
	data_sources and data_source Elements
	basic_data_source Element and BasicDataSource
	connection_pool Element and ConnectionPoolDataSource
	jndi_data_source Element and JNDIDataSource
	custom_data_source Element

	mapping_contexts and mapping_context Elements
	or_mapping_files and or_mapping_file Elements

	Creating a Database Connection File
	DTD for Database Connection Files
	Sample Database Connection File

	Creating an Object-relational (OR) Mapping File
	mappings and mapping Elements
	field Element
	is_key Attribute
	get_method Element
	set_method Element
	Field Type
	basic_type Element
	nested_type Element
	complex_type Element
	element_mapref Element
	key_bindings Element
	complex_collection_type Element

	Primary Key Class

	Developing With dbMapper
	System Requirements
	Installation Tasks
	Building the dbMapper Package
	dbMapper Examples
	Running the Examples
	Setting Up Your Environment
	Example Directory Structure
	Compiling an Example
	Running an Example

	Example1 Œ DataSources
	Example2 Œ Basic Type
	Example3 Œ User Class (User-defined Primary Key Class and Basic Types)
	Example4 Œ Transaction
	Example5 Œ Nested Field
	Example6 Œ Person Class (Complex and Complex Collection Fields)
	Compiling and Running This Example
	Counter Entity Bean

