iv
MSDN 2.0

Template User Instructions
iii

[image: image1.png]
Microsoft® Operations Framework
Version 4.0 
Build Service Management Function
Published: April 2008

For the latest information, please see
microsoft.com/technet/solutionaccelerators
Copyright © 2008 Microsoft Corporation. This documentation is licensed to you under the Creative Commons Attribution License.  To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/us/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.  When using this documentation, provide the following attribution: The Microsoft Operations Framework 4.0 is provided with permission from Microsoft Corporation.  

This documentation is provided to you for informational purposes only, and is provided to you entirely "AS IS". Your use of the documentation cannot be understood as substituting for customized service and information that might be developed by Microsoft Corporation for a particular user based upon that user’s particular environment. To the extent permitted by law, MICROSOFT MAKES NO WARRANTY OF ANY KIND, DISCLAIMS ALL EXPRESS, IMPLIED AND STATUTORY WARRANTIES, AND ASSUMES NO LIABILITY TO YOU FOR ANY DAMAGES OF ANY TYPE IN CONNECTION WITH THESE MATERIALS OR ANY INTELLECTUAL PROPERTY IN THEM. 

Microsoft may have patents, patent applications, trademarks, or other intellectual property rights covering subject matter within this documentation. Except as provided in a separate agreement from Microsoft, your use of this document does not give you any license to these patents, trademarks or other intellectual property.

Information in this document, including URL and other Internet Web site references, is subject to change without notice. Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious.  

Microsoft, Groove, and SharePoint are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. 

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

You have no obligation to give Microsoft any suggestions, comments or other feedback ("Feedback") relating to the documentation. However, if you do provide any Feedback to Microsoft then you provide to Microsoft, without charge, the right to use, share and commercialize your Feedback in any way and for any purpose. You also give to third parties, without charge, any patent rights needed for their products, technologies and services to use or interface with any specific parts of a Microsoft software or service that includes the Feedback. You will not give Feedback that is subject to a license that requires Microsoft to license its software or documentation to third parties because we include your Feedback in them.

Contents

1Position of the Build SMF Within the MOF IT Service Lifecycle


2Why Use the Build SMF?


2Build Service Management Function Overview


2Build SMF Role Types


4Goals of Building


4Key Terms


6Build Process Flow


8Process 1: Prepare for Development


8Activities: Prepare for Development


12Process 2: Develop the Solution


14Activities: Develop the Solution


18Process 3: Prepare for Release


18Activities: Prepare for Release


21Process 4: Review the Scope Complete Milestone


21Activities: Review the Scope Complete Milestone


22Conclusion


22Feedback




Position of the Build SMF Within the MOF IT Service Lifecycle 

The MOF IT service lifecycle encompasses all of the activities and processes involved in managing an IT service: its conception, development, operation, maintenance, and—ultimately—its retirement. MOF organizes these activities and processes into Service Management Functions (SMFs), which are grouped together in lifecycle phases. Each SMF is anchored within a lifecycle phase and contains a unique set of goals and outcomes supporting the objectives of that phase. The SMFs can be used as stand-alone sets of processes, but it is when SMFs are used together that they are most effective in ensuring service delivery at the desired quality and risk levels.

The Build SMF belongs to the Deliver Phase of the MOF IT service lifecycle. The following figure shows the place of the Build SMF within the Deliver Phase, as well as the location of the Deliver Phase within the IT service lifecycle.

[image: image2.jpg]
Figure 1. Position of the Build SMF within the IT service lifecycle

Before you use this SMF, you may want to read the following MOF 4.0 guidance to learn more about the MOF IT service lifecycle and the Deliver Phase:

· MOF Overview
· Deliver Phase Overview
Why Use the Build SMF?

This SMF should be useful for anyone who is involved with a project team tasked with the actual development of an IT service solution, with creating a development and test lab, or with preparing an IT service solution for pilot deployment.

It addresses how to do the following:

· Get ready for development.
· Build the IT service solution.
· Get ready to release the solution.
· Meet the requirements for the Scope Complete Milestone.
Build Service Management Function Overview

Build management is the process of developing solution components: the code for any in-house application or infrastructure solution, and documentation that developers create, as well as the infrastructure that supports them. All team roles participate in the building and internal testing of the deliverables. The purpose of the Build SMF is to help IT organizations successfully build solution components. The Build SMF corresponds to the Developing Phase in the Microsoft Solutions Framework (MSF) Process Model.

Building follows the project planning portion of the Deliver Phase and culminates in the Scope Complete Milestone. At the Scope Complete Milestone, all features are complete and the solution is ready for external testing and stabilization. This milestone is the opportunity for customers, users, operations and support personnel, and key project stakeholders to evaluate the solution and identify any remaining issues that must be addressed before releasing the solution to production. 
Build SMF Role Types

The primary team accountability that applies to the Build SMF is the Solution Accountability. The role types within that accountability and their primary activities within this SMF are displayed in the following table. 

Table 1. Project Accountability and Its Attendant Role Types

	Role Type
	Responsibilities
	Role in This SMF

	Solution Manager
	· Accountable role
· Owns all SMFs in this accountability
· Acts as project director for all projects
· Resolves conflicts between projects
	· Ongoing oversight

	Program Manager
	· Drives design, schedule, and resources at the project level
	· Ensures specification maps to what is being built

	Developer
	· Builds the agreed-to solution
	· Prepares for development

· Develops the solution

	Tester
	· Tests to accurately determine the status of solution development
	· Prepares for testing the solution

· Tests the solution

	Product Manager
	· Acts as the customer advocate
· Helps drive shared project vision 
· Manages customer expectations
	· Ongoing management of customer expectations

	User Experience
	· Acts as the user advocate on project teams
· Helps define user requirements
· Helps design to meet user requirements 
	· Reviews solution specification to ensure it meets end user needs
· Creates user documentation

	Release Management
	· Evaluates the solution design
· Documents operations requirements to ensure they’re met by the design
· Creates a pilot, deployment plan, and schedule
· Manages site deployment
	· Creates deployment and site-preparation checklist

	Operations Experience
	· Advocates for operations on the project team
· Brings in operations experts as needed for detailed information 
· Coordinates with release management
	· Reviews solution specification to ensure that it meets operations requirements

	Test Manager
	· Owns all testing across all project teams
· Develops testing strategy and plans
· Ensures that best practice test methods are used
	· Ongoing oversight


Goals of Building
The primary goals of the building process are to develop the solution deliverables to the customer’s specifications, develop the solution documentation, create the development and test lab, and prepare the solution for pilot deployment. 

The Developer role type is primarily responsible for this goal, but all roles participate in building the solution. To achieve this goal, Development provides low-level solution and feature design, estimates the effort to deliver that design, and builds the solution. Additionally, Development serves the entire team as technology consultant, validating technical decisions and mitigating development risks. Table 2 shows the desired outcomes of the Build SMF’s goals and lists measures you can use to gauge how successfully you have achieved these goals after completing this SMF.

Table 2. Outcomes and Measures of the Build SMF Goals
	Outcomes
	Measures

	A solution delivered to the customer that is free of defects
	· Number of bugs unresolved or deferred

· Signoff on the Scope Complete Milestone

	A solution that meets the customer’s specifications as described in the functional specification
	· Number of design change requests filed

· Number of bugs filed for incorrect implementation

· Signoff on the Scope Complete Milestone

	A solution delivered to the customer within the schedule’s specified timeline
	· Date the Scope Complete Milestone is approved


Key Terms
The following table contains definitions of key terms found in this guide.

Table 3. Key Terms

	Term
	Definition

	Baseline
	A baseline is a known state by which something is measured or compared. Baselining is placing something under change control. Baselines make managing change in complex projects possible.

	Bottom-up scheduling
	Team members representing each role generate time estimates and schedules for deliverables. Each team’s schedule is integrated into a master project schedule.

	Conceptual design
	Conceptual design involves understanding the business requirements and defining the features that users need to do their jobs. Product Management takes the lead in creating the conceptual design, which begins during envisioning and continues through project planning.

	Customer
	The person or organization that commissions and funds the project.

	Interim milestone
	An early progress indicator that segments large work efforts into manageable portions. The Deliver Phase suggests a set of interim milestones, but project teams should define interim milestones that make sense for their projects.

	Logical design
	Logical design uses the conceptual design and the current state of the technology infrastructure to define the new architecture at a high level.

	Milestone
	A project synchronization point. Major milestones mark the transition of projects from one phase to the next phase. They also transfer primary responsibility from one role to another role. The Deliver Phase SMFs correspond to major MSF milestones.

	Physical design
	Physical design goes into greater detail about the desired architecture than logical design, and it defines the hardware configurations and software products to be used. As a general rule, the solution design should contain enough detail to enable the team to begin work on the project plan.

	Scope
	A view of the project’s vision limited by constraints such as time and resources. Solution scope describes the solution’s features and deliverables. Project scope describes the work to be performed by the team.

	Solution
	A coordinated delivery of technologies, documentation, training, and support designed to successfully respond to a unique customer’s business problem. Solutions typically combine people, processes, and technology to solve problems.

	Stakeholder
	Individuals or groups with an interest in the outcome of the project—although their goals and priorities are not always identical to the customer’s. Examples of stakeholders include departmental managers who will be affected by the solution, IT staff who are responsible for running and supporting the solution, and functional managers who contribute resources to the project team.

	Use case
	Describes an individual task performed in a use scenario.

	Use scenario
	Describes a particular activity that a user tries to accomplish, such as processing a transaction or checking e-mail.

	Users
	The people who interact with the solution to perform their jobs.

	Vision
	Describes the fundamental goals of the solution.


Build Process Flow
Figure 2 illustrates the process flow for building. This flow consists of the following processes:

· Prepare for development.
· Develop the solution.
· Prepare for release.
· Review the Scope Complete Milestone and sign off the milestone review report.
[image: image3.png]
Figure 2. Build process flow

Process 1: Prepare for Development

The first process in building the solution is for the project team to prepare to develop the solution.
[image: image4.jpg]
Figure 3. Prepare for development

Activities: Prepare for Development

Development begins with preparation. The project team needs to set up a development and test lab, create issue-tracking procedures, and begin test preparations.

The first part of the preparation for development is preparing a development and test lab. Although teams can create individual labs, creating a shared lab with individual workspaces is more conducive to the teamwork required to deliver complex solutions. 

A working lab environment allows isolated development and testing of the solution so that it has no impact on production systems. The team develops infrastructure components in the lab—including server configurations, deployment automation tools, and related hardware. Setting up separate development servers that developers can use in isolation is a best practice. It’s important for the entire team to understand that whatever is on the lab servers can become unstable and require reinstallation.

If the organization does not already have a lab environment in place, the project team must build one. The development and test lab should simulate the production environment as close as possible while not actually interacting with it. Although this can be expensive, it is crucial. Otherwise, bugs may go undetected until the solution is deployed in the production environment. Organizations can take advantage of information contained in the organization’s configuration management system (CMS) as an inventory for replicating the production environment.

The team should also prepare procedures for tracking issues and their resolutions. Not only do these procedures provide tracking and status information, they also contain information that operations and support will find invaluable after deploying the solution. 

After the lab and issue-tracking procedures are in place, the team can begin test preparations: This includes reviewing the functional specification, preparing test cases, and preparing test scenarios.

The project team should not wait until project planning is finished before beginning this step. The team should set up the lab environment—development workstations, servers, and tools—as plans are being finalized and reviewed in order to avoid delaying the start of the building phase. A backup system should also be established. Thus, this building step overlaps the final processes of project planning.

The following table lists the activities involved in this process. These include:

· Preparing the development lab.

· Creating issue-tracking procedures.

· Preparing to test the solution.

Table 4. Activities and Considerations for Preparing for Development

	Activities
	Considerations

	Prepare the development lab
	Key questions:

· Can the team roles share a common lab? Remember, test should be separate.
· Is equipment available for building a lab to simulate the production environment?
· Does Release Management understand the current and planned environment well enough to replicate it in the lab environment?
· Is an inventory of the hardware in the production environment necessary?
· Is an inventory of the applications in the production environment necessary?
· Does the organization have an existing development and test lab?
· Will the project team use virtualization technology instead of a physical lab?
Inputs:

· Vision/scope document
· Functional specification, including:
· Conceptual design.
· Logical design.
· Physical design.
· Customer baseline, including:
· Topology diagrams of the production environment.
· Hardware and software inventory data.
Outputs:

· Development and test lab, including:
· Topology diagram for the lab.
· Lab policies, procedures, and schedules.
Best practices:

· Teams must usually share files with other teams; thus, construct a lab environment that makes it easy to share files and to access collaboration tools.
· To avoid surprises, ensure that the lab contains hardware that represents the target hardware for the solution in the production environment.

	Create issue-tracking procedures
	Key questions:

· Does the team already have issue-tracking policies and procedures?

· Has the development team ever used a formal issue-tracking process?
· Does the project team have access to an issue-tracking database or must the team create its own issue-tracking database?
Inputs:

· None
Outputs:

· Issue-tracking database
· Issue-tracking policies and procedures (testing and reporting document)
Best practices:

· Resolve all known issues, whether the resolutions are fixes or deferrals.
· Define and communicate standards for issue priority and severity to all team members, including Development, Test, and User Experience.
· Deliver the issue database to training and support staff to provide deeper insight into the history of the solution and problems found in development.
· Schedule regular meetings with those responsible for development and testing to review issues and plan strategies for resolving them.

	Prepare to test the solution
	Key questions:

· Does Test have formal test training?
· Does Test have experience using formal test methodologies, processes, and practices (for example, white box, black box, and gray box testing)?
· Does Test have experience writing test cases and test scenarios?
· Is automated test software available to the Test role?
Inputs:

· Master project plan, including:
· Development plan.
· Test plan.
· Functional specification.
Outputs:

· Test cases and scenarios
Best practices:

· Use automated test software to ensure repeatability.
· Start testing early by reviewing the functional specification and development plans for errors and flaws that can occur in the solution deliverables.


Process 2: Develop the Solution

In this process, Development develops the solution, User Experience writes the documentation, and Test reviews the builds.

[image: image5.jpg]
Figure 4. Develop the solution

Activities: Develop the Solution

The primary activity that occurs during this process is the development of the deliverables, for which Development is primarily responsible.

Additionally, User Experience develops user and IT documentation during this process. In many cases, documentation is the key part of the solution. This is particularly true when building infrastructure solutions.

Test reviews each interim build of the solution, including code and documentation, and logs issues in the issue-tracking database. The development process is not linear but is an iterative one that relies on creating interim builds. By creating and testing interim builds, the team can find and fix solutions earlier in the development process—before those issues become major problems.

Because the development process focuses on developing the solution, the project needs interim milestones that can help the team measure build progress. The development of the solution’s components is done in parallel and in segments, so the team needs a way to measure progress as a whole. Internal builds accomplish this by forcing the team to synchronize components at a solution level. The number and frequency of the builds depends on the size and duration of the project. In most cases, it makes sense to set interim milestones for completion of the user interface design and database schema because there are many dependencies on these—for instance, User Experience needing screen shots for the documentation. 
The following table lists the activities involved in this process. These include:

· Developing the solution deliverables.

· Developing the solution documentation.

· Testing the solution.

Table 5. Activities and Considerations for Developing the Solution

	Activities
	Considerations

	Develop the solution deliverables
	Key questions:

· Is this project a continuation of a previous version?

· Do the developers require training for the tools they’ll be using?

· Is a change control system in place for version tracking?

· Does the project team have a clear approach for handling trade-offs (trading features for schedule, performance for features, and so on)?

· Does Development understand the business and technology drivers?

· Does Development have clear design goals, such as designing for security, designing for interoperability, and so on?

· What guidelines and standards, such as naming standards, must Development follow when developing the solution code?

· Does the project team have a version control system?

· Does the project team have an automated, daily build process?

· What third-party components and development tools will the team use?

Inputs:

· Functional specification

· Master project plan, including the development plan

· Development and testing lab

Outputs:

· Interim solution builds

· Solution deliverables, including:

· Release notes.
· Code and executable files.
· Configuration documentation.
Best practice:

· The axiom measure once, cut twice; measure twice, cut once applies to development. Thorough planning and design leads to simpler development.

	Develop the solution documentation
	Key questions:

· Is this project a continuation of a previous version?

· Is a content management system available?

· Will User Experience repurpose existing documents or start from scratch?

· Does User Experience fully understand the technology being developed?

· Does User Experience understand the business and technology drivers?

· Does User Experience have clear design goals for the documentation, such as readability, accessibility, or portability?

· What guidelines and standards, such as editorial or style guidelines, must User Experience follow when developing the solution documentation?

Inputs:

· Functional specification

· Master project plan

· Interim solution builds

Outputs:

· Interim documentation builds

· User documentation

· Operations documentation

Best practices:

· Outline documentation and gain stakeholder approval before writing.

· Use collaborative software, such as Microsoft® Groove®, to ensure active participation and reviews of the documentation.

· Schedule regular meetings with Development and Test for demonstrations and reviews.

	Test the solution
	Key questions:

· Is the test lab prepared?

· Have the test plan, test scenarios, and test cases been refined?

· Has the test team thoroughly captured the vision/scope document and functional specification in the test scenarios and test cases?

· Is a daily build-process running that gives Test fresh code each day?

· Is the issue-tracking database dynamic enough to allow for agile development? For example, is a notification system available that can alert the project team when new bugs are added to the issue-tracking database or when their status changes?

· Is the project team carrying forward bugs from a previous version?

Inputs:

· Functional specification

· Master project plan, including the test plan

· Development and testing lab

· Interim solution builds

· Interim documentation

· Test scenarios and test cases

· Issue-tracking policies and procedures

Output:

· Issue-tracking database updated

Best practices:

· Use virtualization to minimize the physical hardware required to test.

· If a formal issue-tracking system isn’t available, create an issue-tracking system by using a product such as Microsoft SharePoint® Team Services.

· Create a lab schedule to avoid conflicts.


Process 3: Prepare for Release

In this process, the project team begins creating deployment and training documentation.

[image: image6.jpg]
Figure 5. Prepare for release

Activities: Prepare for Release

During the release preparation process, the team begins developing content and procedures for deploying the solution into the production environment. The first activity is to create deployment content. This includes updating the master plan, including the deployment plan. The second activity is to begin developing training content for the users who will interact with the solution and for IT staff members who will deploy, operate, and support the solution.

The following table lists the activities involved in this process. These include:

· Preparing for deployment.

· Preparing training content. 

Table 6. Activities and Considerations for Preparing for Release

	Activities
	Considerations

	Prepare for deployment
	Key questions:

· Does the team understand the topology of the production environment?

· Has the team chosen a pilot group for the solution?

· Is a feedback process available for a pilot test?

· Does the team have experience deploying similar solutions?

· Is the team utilizing existing or deploying new infrastructure?

· Have Development and User Experience documented preparation, installation, training, and stabilizing processes?

Inputs:

· Functional specification

· Master project plan, including:
· Pilot plan.
· Deployment plan.
· Customer baseline, including:

· Topology diagrams of the production environment.
· Hardware and software inventory data.
Outputs:

· Updated master project plan, including:
· Pilot plan.
· Deployment plan.
· Deployment infrastructure, including hardware and software.
Best practice:

· Ensure that the customer baseline is accurate and current.

	Prepare training content
	Key questions:

· Are users familiar with the technology being deployed?

· Is the IT staff generally familiar with the technology being deployed?

· Will the solution significantly affect how employees perform their jobs?

· Must users understand all of the solution’s features or just part of them?

· What is the general mood in the organization about change?

· Does IT regularly communicate with users about its initiatives?

· What media are available for communicating with users?

Inputs:

· Interim solution builds

· Interim documentation builds

· Master project plan, including:
· Training plan.
· Communications plan.
Outputs:

· Master project plan updated, including:

· Training plan.
· Communications plan.
· Training content.
Best practice:

· Ensure that every group in the organization affected by the solution gets the information it needs without burdening it with too much information.


Process 4: Review the Scope Complete Milestone

In this final process, the Scope Complete Milestone is reviewed.

[image: image7.jpg]
Figure 6. Review the Scope Complete Milestone

Activities: Review the Scope Complete Milestone

To complete this process, the project team, customers, and stakeholders review the Scope Complete Milestone. They agree that the team has met all interim milestones and that the full scope of the solution as defined in the functional specification has been developed. After reviewing and approving the Scope Complete Milestone, the project team is ready to move on to stabilizing.

Table 7. Activities and Considerations for Reviewing the Scope Complete Milestone

	Activities
	Considerations

	Sign off the milestone review report for the Scope Complete Milestone
	Key questions:

· Have the project team, customers, and stakeholders reviewed the solution deliverables, including code, infrastructure, and documentation?

· Do the project team, customer, and stakeholders agree that the project team has met the requirements of the Scope Complete Milestone?

Inputs:

· Solution deliverables, including:

· Release notes.
· Code and executable files.
· Configuration documentation.
· Documentation, including:
· User documentation.
· Operations documentation.
· Master plan updated, including:
· Pilot plan.
· Deployment plan.
· Deployment infrastructure, including hardware and software

Output:

· Milestone review report document
Best Practices:

· Ensure alignment with the organization’s release policy in terms of:
· Release content.
· Release numbering. 

· Release documentation.
· Release plan for this particular build.


Conclusion

The Build SMF describes the process for developing the solution components for an IT service. Those components include the code and documentation that developers create and the infrastructure that supports them. The SMF also describes how to create the development and test lab and prepare the solution for pilot deployment.

The major build processes described by the SMF are:

· Prepare for development.
· Develop the solution.
· Prepare for release.
· Review the Scope Complete Milestone and sign off on the milestone review report.
Feedback

Please direct questions and comments about this guide to mof@microsoft.com.




[image: image1.png]
Solution Accelerators
microsoft.com/technet/SolutionAccelerators

Solution Accelerators
microsoft.com/technet/SolutionAccelerators


[image: image8.jpg]